Concavity Enhanced Heat Transfer in an Internal Cooling Passage

The present study evaluates an innovative approach for enhancement of surface heat transfer in a channel using concavities, rather than protruding elements. Serving as a vortex generator, a concavity is expected to promote turbulent mixing in the flow bulk and enhance the heat transfer. Using a transient liquid crystal imaging system, local heat transfer distribution on the surface roughened by an staggered array based on two different shapes of concavities, i.e. hemispheric and tear-drop shaped, have been obtained, analyzed and compared. The results reveal that both concavity configurations induce a heat transfer enhancement similar to that of continuous rib turbulators, about 2.5 times their smooth counterparts 10,000 ≤ Re ≤ 50,000. In addition, both concavity arrays reveal remarkably low pressure losses that are nearly one-half the magnitudes incurred with protruding elements. In turbine cooling applications, the concavity approach is particularly attractive in reducing system weight and ease of manufacturing.© 1997 ASME