Electron Cryomicroscopy of E. coli Reveals Filament Bundles Involved in Plasmid DNA Segregation

Bipolar elongation of filaments of the bacterial actin homolog ParM drives movement of newly replicated plasmid DNA to opposite poles of a bacterial cell. We used a combination of vitreous sectioning and electron cryotomography to study this DNA partitioning system directly in native, frozen cells. The diffraction patterns from overexpressed ParM bundles in electron cryotomographic reconstructions were used to unambiguously identify ParM filaments in Escherichia coli cells. Using a low–copy number plasmid encoding components required for partitioning, we observed small bundles of three to five intracellular ParM filaments that were situated close to the edge of the nucleoid. We propose that this may indicate the capture of plasmid DNA within the periphery of this loosely defined, chromosome-containing region.

[1]  A. Alivisatos,et al.  Protein-Nanocrystal Conjugates Support a Single Filament Polymerization Model in R1 Plasmid Segregation* , 2008, Journal of Biological Chemistry.

[2]  J. Löwe,et al.  Bacterial actin: architecture of the ParMRC plasmid DNA partitioning complex , 2008, The EMBO journal.

[3]  H. Matsuo,et al.  Molecular structure of the ParM polymer and the mechanism leading to its nucleotide‐driven dynamic instability , 2008, The EMBO journal.

[4]  R. Mullins,et al.  In vivo visualization of type II plasmid segregation: bacterial actin filaments pushing plasmids , 2007, The Journal of cell biology.

[5]  Edward H Egelman,et al.  The structure of bacterial ParM filaments , 2007, Nature Structural &Molecular Biology.

[6]  D. Weibel,et al.  Reconstitution of DNA Segregation Driven by Assembly of a Prokaryotic Actin Homolog , 2007, Science.

[7]  Yuichiro Maéda,et al.  Concerning the dynamic instability of actin homolog ParM. , 2007, Biochemical and biophysical research communications.

[8]  M. Eltsov,et al.  Transmission electron microscopy of the bacterial nucleoid. , 2006, Journal of structural biology.

[9]  D. Sherratt,et al.  Partition‐associated incompatibility caused by random assortment of pure plasmid clusters , 2005, Molecular microbiology.

[10]  E. Garner,et al.  Dynamic Instability in a DNA-Segregating Prokaryotic Actin Homolog , 2004, Science.

[11]  J. Dubochet,et al.  Cryo‐electron microscopy of vitreous sections , 2004, The EMBO journal.

[12]  Peter Roepstorff,et al.  Bacterial mitosis: ParM of plasmid R1 moves plasmid DNA by an actin-like insertional polymerization mechanism. , 2003, Molecular cell.

[13]  Jan Löwe,et al.  F‐actin‐like filaments formed by plasmid segregation protein ParM , 2002, The EMBO journal.

[14]  R. B. Jensen,et al.  Prokaryotic DNA segregation by an actin‐like filament , 2002, The EMBO journal.

[15]  K. Nordström,et al.  Role of the mukB gene in chromosome and plasmid partition in Escherichia coli , 2000, Molecular microbiology.

[16]  R. B. Jensen,et al.  Mechanism of DNA segregation in prokaryotes: replicon pairing by parC of plasmid R1. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. B. Jensen,et al.  Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR-parC complex. , 1997, Journal of molecular biology.

[18]  K. Gerdes,et al.  Partitioning of plasmid R1. Ten direct repeats flanking the parA promoter constitute a centromere-like partition site parC, that expresses incompatibility. , 1994, Journal of molecular biology.

[19]  S. Molin,et al.  Partitioning of plasmid R1. Structural and functional analysis of the parA locus. , 1986, Journal of molecular biology.

[20]  S. Molin,et al.  Partitioning of plasmid R1 in Escherichia coli. II. Incompatibility properties of the partitioning system. , 1980, Plasmid.