Class D β-lactamases do exist in Gram-positive bacteria

Production of β-lactamases of the four molecular classes (A, B, C, and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics that have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, they have not been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinct structural architecture and employ a unique substrate binding mode quite different from that of all currently known class A, C, and D β-lactamases. They constitute a novel reservoir of antibiotic resistance enzymes.

[1]  G. Bou,et al.  Crystal structure of the carbapenemase OXA-24 reveals insights into the mechanism of carbapenem hydrolysis , 2007, Proceedings of the National Academy of Sciences.

[2]  J M Ghuysen,et al.  A standard numbering scheme for the class A beta-lactamases. , 1991, The Biochemical journal.

[3]  R. Bonomo,et al.  Class D β-lactamases: a reappraisal after five decades. , 2013, Accounts of chemical research.

[4]  N. G. Brown,et al.  Analysis of the plasticity of location of the Arg244 positive charge within the active site of the TEM‐1 β‐lactamase , 2009, Protein science : a publication of the Protein Society.

[5]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[6]  T. Bernhardt,et al.  Beta-Lactam Antibiotics Induce a Lethal Malfunctioning of the Bacterial Cell Wall Synthesis Machinery , 2014, Cell.

[7]  K. Wilson,et al.  Efficient anisotropic refinement of macromolecular structures using FFT. , 1999, Acta crystallographica. Section D, Biological crystallography.

[8]  J. Frère,et al.  The ybxI Gene of Bacillus subtilis 168 Encodes a Class D β-Lactamase of Low Activity , 2004, Antimicrobial Agents and Chemotherapy.

[9]  Tao Sun,et al.  Comparison of β‐lactamases of classes A and D: 1.5‐Å crystallographic structure of the class D OXA‐1 oxacillinase , 2003, Protein science : a publication of the Protein Society.

[10]  S. Brisse,et al.  Molecular Epidemiology of Multidrug-Resistant Acinetobacter baumannii in a Tertiary Care Hospital in Naples, Italy, Shows the Emergence of a Novel Epidemic Clone , 2010, Journal of Clinical Microbiology.

[11]  R. Bonomo,et al.  Structures of the class D carbapenemase OXA-24 from Acinetobacter baumannii in complex with doripenem. , 2011, Journal of molecular biology.

[12]  Philip R. Evans,et al.  An introduction to data reduction: space-group determination, scaling and intensity statistics , 2011, Acta crystallographica. Section D, Biological crystallography.

[13]  B. Shoichet,et al.  Structural Basis for Imipenem Inhibition of Class C β-Lactamases , 2002, Antimicrobial Agents and Chemotherapy.

[14]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[15]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.

[16]  B K Shoichet,et al.  Structures of ceftazidime and its transition-state analogue in complex with AmpC beta-lactamase: implications for resistance mutations and inhibitor design. , 2001, Biochemistry.

[17]  B. Shoichet,et al.  Crystal Structures of Substrate and Inhibitor Complexes with AmpC β-Lactamase: Possible Implications for Substrate-Assisted Catalysis , 2000 .

[18]  P. Riley,et al.  CORRECTION , 2006, Journal of Clinical Pathology.

[19]  L. Kotra,et al.  The First Structural and Mechanistic Insights for Class D beta-Lactamases: Evidence for a Novel Catalytic Process for Turnover of beta-Lactam Antibiotics , 2000 .

[20]  S. Mobashery,et al.  An antibiotic-resistance enzyme from a deep-sea bacterium. , 2010, Journal of the American Chemical Society.

[21]  R. Ambler,et al.  The structure of beta-lactamases. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[22]  R. Pratt,et al.  The Oxyanion Hole in Serine beta-Lactamase Catalysis: Interactions of Thiono Substrates with the Active Site. , 2000, Bioorganic chemistry.

[23]  Clinical,et al.  Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : Approved standard , 2006 .

[24]  Malika Kumarasiri,et al.  Structural basis for carbapenemase activity of the OXA-23 β-lactamase from Acinetobacter baumannii. , 2013, Chemistry & biology.

[25]  R. Bonomo,et al.  Probing active site chemistry in SHV beta-lactamase variants at Ambler position 244. Understanding unique properties of inhibitor resistance. , 2006, The Journal of biological chemistry.

[26]  N. Datta,et al.  Molecular Specificities of R Factor-Determined Beta-Lactamases: Correlation with Plasmid Compatibility , 1974, Journal of bacteriology.

[27]  R. Sykes,et al.  The -lactamases of Gram-negative bacteria and their rle in resistance to -lactam antibiotics , 1976 .

[28]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[29]  N. Høiby,et al.  OXA-type carbapenemases. , 2006, The Journal of antimicrobial chemotherapy.

[30]  P. H. Roy,et al.  Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 beta-lactamase gene. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Tóth,et al.  Class D β-Lactamases: Are They All Carbapenemases? , 2014, Antimicrobial Agents and Chemotherapy.

[32]  L. Kotra,et al.  Hydrolytic Mechanism of OXA-58 Enzyme, a Carbapenem-hydrolyzing Class D β-Lactamase from Acinetobacter baumannii , 2011, The Journal of Biological Chemistry.

[33]  M. Tóth,et al.  Crystal Structure of Carbapenemase OXA-58 from Acinetobacter baumannii , 2014, Antimicrobial Agents and Chemotherapy.

[34]  Laurent Maveyraud,et al.  Crystal Structure of 6Alpha-Hydroxymethylpenicillanate Complexed to the Tem-1 Beta-Lactamase from Escherichia Coli: Evidence on the Mechanism of Action of a Novel Inhibitor Designed by a Computer-Aided Process , 1996 .

[35]  M. E. Karpen,et al.  The 1.4 A crystal structure of the class D beta-lactamase OXA-1 complexed with doripenem. , 2009, Biochemistry.

[36]  R. Bonomo,et al.  Structures of the Class D Carbapenemases OXA-23 and OXA-146: Mechanistic Basis of Activity against Carbapenems, Extended-Spectrum Cephalosporins, and Aztreonam , 2013, Antimicrobial Agents and Chemotherapy.

[37]  M. Page,et al.  Crystal structure of the class D β-lactamase OXA-10 , 2000, Nature Structural Biology.

[38]  J. Delettré,et al.  Crystal structures of the class D beta-lactamase OXA-13 in the native form and in complex with meropenem. , 2001, Journal of molecular biology.

[39]  J. Samama,et al.  Critical involvement of a carbamylated lysine in catalytic function of class D β-lactamases , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  P. Nordmann,et al.  Diversity, Epidemiology, and Genetics of Class D β-Lactamases , 2009, Antimicrobial Agents and Chemotherapy.

[41]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[42]  Mary Jane Ferraro,et al.  Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : approved standard , 2000 .

[43]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[44]  Otto Dideberg,et al.  Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. , 2006, FEMS microbiology reviews.

[45]  V. Calderone,et al.  Crystal Structure of the Narrow-Spectrum OXA-46 Class D β-Lactamase: Relationship between Active-Site Lysine Carbamylation and Inhibition by Polycarboxylates , 2010, Antimicrobial Agents and Chemotherapy.

[46]  M. Botta,et al.  Crystal structure of the OXA-48 beta-lactamase reveals mechanistic diversity among class D carbapenemases. , 2009, Chemistry & biology.

[47]  K. Bush Proliferation and significance of clinically relevant β‐lactamases , 2013, Annals of the New York Academy of Sciences.

[48]  T. Grundström,et al.  ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Yan Zhang,et al.  PATRIC, the bacterial bioinformatics database and analysis resource , 2013, Nucleic Acids Res..

[50]  J. Strominger,et al.  Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. , 1983, Annual review of biochemistry.

[51]  K. Poole Resistance to β-lactam antibiotics , 2004, Cellular and Molecular Life Sciences CMLS.

[52]  Clyde A. Smith,et al.  Kinetic and Structural Requirements for Carbapenemase Activity in GES-Type β-Lactamases , 2014, Biochemistry.