Covalent organic frameworks (COFs): from design to applications.

Covalent organic frameworks (COFs) represent an exciting new type of porous organic materials, which are ingeniously constructed with organic building units via strong covalent bonds. The well-defined crystalline porous structures together with tailored functionalities have offered the COF materials superior potential in diverse applications, such as gas storage, adsorption, optoelectricity, and catalysis. Since the seminal work of Yaghi and co-workers in 2005, the rapid development in this research area has attracted intensive interest from researchers with diverse expertise. This critical review describes the state-of-the-art development in the design, synthesis, characterisation, and application of the crystalline porous COF materials. Our own opinions on further development of the COF materials are also presented for discussion (155 references).

[1]  S. Nagase,et al.  Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. , 2011, Angewandte Chemie.

[2]  Ling Zang,et al.  One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices. , 2008, Accounts of chemical research.

[3]  A. Cooper,et al.  Microporous organic polymers: design, synthesis, and function. , 2010, Topics in current chemistry.

[4]  C. Oliver Kappe,et al.  Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature , 2009, Molecular Diversity.

[5]  M. Tafipolsky,et al.  An accurate force field model for the strain energy analysis of the covalent organic framework COF-102. , 2008, Journal of the American Chemical Society.

[6]  S. Wan,et al.  A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. , 2009, Angewandte Chemie.

[7]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[8]  Ferdi Schüth,et al.  Handbook of porous solids , 2002 .

[9]  Neil L. Campbell,et al.  Rapid Microwave Synthesis and Purification of Porous Covalent Organic Frameworks , 2009 .

[10]  Xiao Feng,et al.  Pore surface engineering in covalent organic frameworks. , 2011, Nature communications.

[11]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[12]  Jun Hu,et al.  Computer Simulation of Adsorption and Separation of CO2/CH4 in Modified COF-102 , 2011 .

[13]  J. Kang,et al.  Ideal metal-decorated three dimensional covalent organic frameworks for reversible hydrogen storage , 2008 .

[14]  C. Serre,et al.  Microwave Synthesis of Chromium Terephthalate MIL‐101 and Its Benzene Sorption Ability , 2007 .

[15]  Ying Wan,et al.  On the controllable soft-templating approach to mesoporous silicates. , 2007, Chemical reviews.

[16]  E. Klontzas,et al.  Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks. , 2011, Nanoscale.

[17]  Michael O'Keeffe,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[18]  M. Antonietti,et al.  Rational Extension of the Family of Layered, Covalent, Triazine‐Based Frameworks with Regular Porosity , 2010, Advanced materials.

[19]  Ning Wang,et al.  Growth of nanowires , 2008 .

[20]  Chongli Zhong,et al.  Negative Thermal Expansion in Covalent Organic Framework COF-102 , 2009 .

[21]  Bingbing Liu,et al.  Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene. , 2010, Chemical communications.

[22]  Didier Gigmes,et al.  Organized formation of 2D extended covalent organic frameworks at surfaces. , 2008, Journal of the American Chemical Society.

[23]  Omar M. Yaghi,et al.  Reticular synthesis of covalent organic borosilicate frameworks. , 2008, Journal of the American Chemical Society.

[24]  Omar M Yaghi,et al.  Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. , 2009, Journal of the American Chemical Society.

[25]  Xiao Feng,et al.  Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters. , 2011, Chemical communications.

[26]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[27]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. , 2004, Chemical communications.

[28]  Ivana Radivojevic,et al.  Self-organized porphyrinic materials. , 2009, Chemical reviews.

[29]  SonBinh T. Nguyen,et al.  Porous organic polymers in catalysis: Opportunities and challenges , 2011 .

[30]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[31]  T. Bein,et al.  A Covalent Organic Framework with 4 nm open poresw , 2010 .

[32]  Samuel I Stupp,et al.  Molecular self-assembly into one-dimensional nanostructures. , 2008, Accounts of chemical research.

[33]  N. Champness,et al.  Templating molecular adsorption using a covalent organic framework. , 2010, Chemical communications.

[34]  T. Heine,et al.  The structure of layered covalent-organic frameworks. , 2011, Chemistry.

[35]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[36]  Wenchuan Wang,et al.  Lithium-doped 3D covalent organic frameworks: high-capacity hydrogen storage materials. , 2009, Angewandte Chemie.

[37]  James K Gimzewski,et al.  Thermodynamically controlled self-assembly of covalent nanoarchitectures in aqueous solution. , 2011, ACS nano.

[38]  E. Klontzas,et al.  The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties , 2009, Nanotechnology.

[39]  X. Yao,et al.  Tröger's base-functionalised organic nanoporous polymer for heterogeneous catalysis. , 2010, Chemical communications.

[40]  A. J. Blake,et al.  Sawhorse connections in a Ag(I)-nitrite coordination network: {[Ag(pyrazine)]NO2}∞ , 1999 .

[41]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[42]  D. Braga,et al.  Crystal Engineering and Organometallic Architecture. , 1998, Chemical reviews.

[43]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[44]  R. Stuart Haszeldine,et al.  Carbon Capture and Storage: How Green Can Black Be? , 2009, Science.

[45]  S. Nguyen,et al.  Imine-Linked Microporous Polymer Organic Frameworks , 2010 .

[46]  Andrew I. Cooper,et al.  Nanoporous organic polymer networks , 2012 .

[47]  Avelino Corma,et al.  From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. , 1997, Chemical reviews.

[48]  Omar M. Yaghi,et al.  Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0 , 2008 .

[49]  E. Klontzas,et al.  Hydrogen Storage in 3D Covalent Organic Frameworks. A Multiscale Theoretical Investigation , 2008 .

[50]  Xiao‐Ming Chen,et al.  A novel two-dimensional rectangular network. Synthesis and structure of {[Cu(4,4′-bpy)(pyz)(H2O)2][PF6]2}n (4,4′-bpy = 4,4′-bipyridine, pyz = pyrazine) , 1998 .

[51]  G. Seifert,et al.  Hydrogen adsorption sites and energies in 2D and 3D covalent organic frameworks , 2010 .

[52]  Junliang Sun,et al.  Cyclotricatechylene based porous crystalline material: Synthesis and applications in gas storage , 2012 .

[53]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[54]  J. Andresen,et al.  Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41 , 2003 .

[55]  Jianwen Jiang,et al.  Exceptionally high CO2storage in covalent-organic frameworks: Atomistic simulation study , 2008 .

[56]  Arne Thomas Functional materials: from hard to soft porous frameworks. , 2010, Angewandte Chemie.

[57]  R. T. Yang,et al.  Hydrogen storage in metal‐organic and covalent‐organic frameworks by spillover , 2008 .

[58]  A. Corma,et al.  MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF , 2007 .

[59]  Omar M Yaghi,et al.  Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. , 2007, Journal of the American Chemical Society.

[60]  A. Villa,et al.  Covalent triazine framework as catalytic support for liquid phase reaction. , 2010, Nano letters.

[61]  W. Zhou,et al.  Structural stability and elastic properties of prototypical covalent organic frameworks , 2010 .

[62]  S. Irle,et al.  An n-channel two-dimensional covalent organic framework. , 2011, Journal of the American Chemical Society.

[63]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[64]  Neil L. Campbell,et al.  Conjugated microporous poly(aryleneethynylene) networks. , 2007, Angewandte Chemie.

[65]  Stephan Irle,et al.  High-rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction. , 2012, Angewandte Chemie.

[66]  Michael O'Keeffe,et al.  Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. , 2009, Journal of the American Chemical Society.

[67]  Abraham M. Shultz,et al.  A catalytically active, permanently microporous MOF with metalloporphyrin struts. , 2009, Journal of the American Chemical Society.

[68]  S. Wan,et al.  A belt-shaped, blue luminescent, and semiconducting covalent organic framework. , 2008, Angewandte Chemie.

[69]  N. G. Mccrum,et al.  Principles Of Polymer Engineering , 1988 .

[70]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[71]  M. Mastalerz The next generation of shape-persistant zeolite analogues: covalent organic frameworks. , 2008, Angewandte Chemie.

[72]  Arne Thomas,et al.  Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry. , 2009, Journal of the American Chemical Society.

[73]  J. Wuest,et al.  Engineering crystals by the strategy of molecular tectonics. , 2005, Chemical communications.

[74]  R. Fischer,et al.  Metallocenes@COF-102: organometallic host-guest chemistry of porous crystalline organic frameworks. , 2011, Chemical communications.

[75]  William R. Gemmill,et al.  Facile Synthesis of a Highly Crystalline, Covalently Linked Porous Boronate Network , 2006 .

[76]  William R. Dichtel,et al.  Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. , 2010, Nature chemistry.

[77]  Kevin Robbie,et al.  Nanomaterials and nanoparticles: Sources and toxicity , 2007, Biointerphases.

[78]  William R. Dichtel,et al.  Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. , 2012, Angewandte Chemie.

[79]  Chongli Zhong,et al.  Molecular simulation study of the stepped behaviors of gas adsorption in two-dimensional covalent organic frameworks. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[80]  D. Jiang,et al.  CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. , 2010, Journal of the American Chemical Society.

[81]  J. Fierro,et al.  Delamination of layered covalent organic frameworks. , 2011, Small.

[82]  W. Heckl,et al.  Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). , 2009, Chemical communications.

[83]  Sang Soo Han,et al.  Adsorption mechanism and uptake of methane in covalent organic frameworks: theory and experiment. , 2010, The journal of physical chemistry. A.

[84]  F. Švec,et al.  Nanoporous polymers for hydrogen storage. , 2009, Small.

[85]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[86]  J. Kang,et al.  Covalent organic frameworks for extremely high reversible CO2 uptake capacity: a theoretical approach , 2011 .

[87]  G. Garberoglio,et al.  Computer simulation of the adsorption of light gases in covalent organic frameworks. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[88]  Oren A Scherman,et al.  Chemical complexity--supramolecular self-assembly of synthetic and biological building blocks in water. , 2010, Chemical Society reviews.

[89]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[90]  J. Lavigne,et al.  Defining Self-Assembling Linear Oligo(dioxaborole)s , 2007 .

[91]  T. Bein,et al.  Synthesis of well-ordered COF monolayers: surface growth of nanocrystalline precursors versus direct on-surface polycondensation. , 2011, ACS nano.

[92]  William R. Dichtel,et al.  Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene , 2011, Science.

[93]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[94]  J. Lavigne,et al.  Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks. , 2011, Journal of the American Chemical Society.

[95]  K. Maly Assembly of nanoporous organic materials from molecular building blocks , 2009 .

[96]  Michael O’Keeffe,et al.  A crystalline imine-linked 3-D porous covalent organic framework. , 2009, Journal of the American Chemical Society.

[97]  C. D. Collier,et al.  Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. , 2008, Journal of the American Chemical Society.

[98]  Mayur Suri,et al.  Calculation of hydrogen storage capacity of metal-organic and covalent-organic frameworks by spillover. , 2009, The Journal of chemical physics.

[99]  Taeghwan Hyeon,et al.  Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. , 2001, Journal of the American Chemical Society.

[100]  A. Cooper,et al.  Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes , 2010 .

[101]  Mark E. Davis Ordered porous materials for emerging applications , 2002, Nature.

[102]  William R. Dichtel,et al.  Internal functionalization of three-dimensional covalent organic frameworks. , 2012, Angewandte Chemie.

[103]  M. Antonietti,et al.  Solid catalysts for the selective low-temperature oxidation of methane to methanol. , 2009, Angewandte Chemie.

[104]  Christian J. Doonan,et al.  Crystalline covalent organic frameworks with hydrazone linkages. , 2011, Journal of the American Chemical Society.

[105]  Jason Graetz,et al.  New approaches to hydrogen storage. , 2009, Chemical Society reviews.

[106]  Robert Robinson,et al.  LXIII.—A synthesis of tropinone , 1917 .

[107]  Andrew I. Cooper,et al.  Conjugated Microporous Polymers , 2009 .

[108]  Qiang Sun,et al.  First-principles study of hydrogen adsorption in metal-doped COF-10. , 2010, The Journal of chemical physics.

[109]  Sang Soo Han,et al.  Covalent organic frameworks as exceptional hydrogen storage materials. , 2008, Journal of the American Chemical Society.

[110]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[111]  Chongli Zhong,et al.  Estimation of Framework Charges in Covalent Organic Frameworks Using Connectivity-Based Atom Contribution Method , 2010 .

[112]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[113]  G. Whitesides,et al.  Noncovalent Synthesis: Using Physical-Organic Chemistry To Make Aggregates , 1995 .

[114]  L. Wan,et al.  Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. , 2012, Chemical communications.

[115]  J. F. Stoddart,et al.  Covalent Organic Frameworks with High Charge Carrier Mobility , 2011 .

[116]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[117]  A. Tsivadze,et al.  Supramolecular chemistry of metalloporphyrins. , 2009, Chemical reviews.

[118]  Craig J. Medforth,et al.  Self-assembled porphyrin nanostructures. , 2009, Chemical communications.

[119]  V. Davankov,et al.  Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks , 1990 .

[120]  A. Villa,et al.  Triazine-based polymers as nanostructured supports for the liquid-phase oxidation of alcohols. , 2011, Chemistry.

[121]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[122]  Samuel J. Mugavero,et al.  Tailoring Microporosity in Covalent Organic Frameworks , 2008, Advanced materials.

[123]  D. Zhao,et al.  "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials. , 2006, Accounts of chemical research.

[124]  William R. Dichtel,et al.  A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking. , 2011, Journal of the American Chemical Society.

[125]  C. Kappe,et al.  Controlled microwave heating in modern organic synthesis. , 2004, Angewandte Chemie.

[126]  Joseph R. Hunt,et al.  Exceptional ammonia uptake by a covalent organic framework. , 2010, Nature chemistry.

[127]  M. Mazzoni,et al.  Porous nanotubes and fullerenes based on covalent organic frameworks , 2007 .

[128]  Ralph H. Scheicher,et al.  Ab Initio Study of Molecular Hydrogen Adsorption in Covalent Organic Framework-1 , 2009 .

[129]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[130]  M. O'Keeffe Design of MOFs and intellectual content in reticular chemistry: a personal view. , 2009, Chemical Society reviews.

[131]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[132]  Michael O'Keeffe,et al.  Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. , 2012, Chemical reviews.

[133]  Yuan Zhang,et al.  Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. , 2011, Journal of the American Chemical Society.

[134]  Feng Deng,et al.  Gas storage in porous aromatic frameworks (PAFs) , 2011 .

[135]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[136]  Wei Wang,et al.  Reactivity of surface alkoxy species on acidic zeolite catalysts. , 2008, Accounts of chemical research.

[137]  Wenbin Lin Asymmetric Catalysis with Chiral Porous Metal–Organic Frameworks , 2010 .

[138]  Peter J Stang,et al.  Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. , 2011, Chemical reviews.

[139]  Yugen Zhang,et al.  Functional porous organic polymers for heterogeneous catalysis. , 2012, Chemical Society reviews.

[140]  William R. Dichtel,et al.  A mechanistic study of Lewis acid-catalyzed covalent organic framework formation , 2011 .

[141]  T. Heine,et al.  On the reticular construction concept of covalent organic frameworks , 2010, Beilstein journal of nanotechnology.

[142]  V. Davankov,et al.  Hypercrosslinked polymers: basic principle of preparing the new class of polymeric materials , 2002 .

[143]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[144]  M. Fujita,et al.  Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4'-bpy)]4(NO3)8 (en = ethylenediamine, bpy = bipyridine), which recognizes an organic molecule in aqueous media , 1990 .

[145]  M. Fröba,et al.  Silica-based mesoporous organic-inorganic hybrid materials. , 2006, Angewandte Chemie.

[146]  R. Masel,et al.  Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. , 2006, Journal of the American Chemical Society.