THE PAN-STARRS 1 DISCOVERIES OF FIVE NEW NEPTUNE TROJANS

In this work, we report the detection of seven Neptune Trojans (NTs) in the Pan-STARRS 1 (PS1) survey. Five of these are new discoveries, consisting of four L4 Trojans and one L5 Trojan. Our orbital simulations show that the L5 Trojan stably librates for only several million years. This suggests that the L5 Trojan must be of recent capture origin. On the other hand, all four new L4 Trojans stably occupy the 1:1 resonance with Neptune for more than 1 Gyr. They can, therefore, be of primordial origin. Our survey simulation results show that the inclination width of the NT population should be between 7° and 27° at >95% confidence, and most likely ∼11°. In this paper, we describe the PS1 survey, the Outer Solar System pipeline, the confirming observations, and the orbital/physical properties of the new NTs.

[1]  Chen Yuan-yuan,et al.  The effect of orbital damping during planet migration on the inclination and eccentricity distributions of Neptunian Trojans , 2016 .

[2]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[3]  C. B. D'Andrea,et al.  OBSERVATION OF TWO NEW L4 NEPTUNE TROJANS IN THE DARK ENERGY SURVEY SUPERNOVA FIELDS , 2015, 1507.05177.

[4]  Michael Marsset,et al.  THE OUTER SOLAR SYSTEM ORIGINS SURVEY. I. DESIGN AND FIRST-QUARTER DISCOVERIES , 2015, 1511.02895.

[5]  A. Parker The intrinsic Neptune Trojan orbit distribution: Implications for the primordial disk and planet migration , 2014, 1409.6735.

[6]  B. Gladman,et al.  A CAREFULLY CHARACTERIZED AND TRACKED TRANS-NEPTUNIAN SURVEY: THE SIZE DISTRIBUTION OF THE PLUTINOS AND THE NUMBER OF NEPTUNIAN TROJANS , 2014, 1411.7953.

[7]  W. Fraser,et al.  THE ABSOLUTE MAGNITUDE DISTRIBUTION OF KUIPER BELT OBJECTS , 2014, 1401.2157.

[8]  Richard P. Binzel,et al.  2011 HM102: DISCOVERY OF A HIGH-INCLINATION L5 NEPTUNE TROJAN IN THE SEARCH FOR A POST-PLUTO NEW HORIZONS TARGET , 2012, 1210.4549.

[9]  P. S. Lykawka,et al.  2004 KV18: a visitor from the scattered disc to the Neptune Trojan population , 2012, 1207.2925.

[10]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[11]  P. S. Lykawka,et al.  2008 LC18: A potentially unstable Neptune Trojan , 2012, 1202.3279.

[12]  Stephen. D. J. Gwyn,et al.  SSOS: A Moving-Object Image Search Tool for Asteroid Precovery , 2011, 1111.3364.

[13]  T. Grav,et al.  PAndromeda—FIRST RESULTS FROM THE HIGH-CADENCE MONITORING OF M31 WITH Pan-STARRS 1 , 2011, 1109.6320.

[14]  T. Mukai,et al.  Origin and dynamical evolution of Neptune Trojans – II. Long-term evolution , 2010, 1011.1072.

[15]  C. Trujillo,et al.  THE SIZE DISTRIBUTION OF THE NEPTUNE TROJANS AND THE MISSING INTERMEDIATE-SIZED PLANETESIMALS , 2010, 1009.5990.

[16]  C. Trujillo,et al.  Detection of a Trailing (L5) Neptune Trojan , 2010, Science.

[17]  Larry Denneau,et al.  The Pan-STARRS wide-field optical/NIR imaging survey , 2010, Astronomical Telescopes + Instrumentation.

[18]  P. S. Lykawka,et al.  2001 QR322: a dynamically unstable Neptune Trojan? , 2010, 1002.4699.

[19]  T. Mukai,et al.  Origin and dynamical evolution of Neptune Trojans: I. formation and planetary migration , 2009, 0909.0404.

[20]  Austria,et al.  The dynamics of Neptune Trojan - I. The inclined orbits , 2009, 0906.5075.

[21]  D. Vokrouhlický,et al.  CHAOTIC CAPTURE OF NEPTUNE TROJANS , 2009 .

[22]  R. Dvorak,et al.  On the stability of the Neptune Trojans , 2007 .

[23]  C. Trujillo,et al.  A Thick Cloud of Neptune Trojans and Their Colors , 2006, Science.

[24]  T. Loredo,et al.  The Kuiper Belt luminosity function from mR = 22 to 25 , 2006 .

[25]  Fumi Yoshida,et al.  Size Distribution of Faint Jovian L4 Trojan Asteroids , 2005 .

[26]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[27]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[28]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[29]  E. Chiang,et al.  Neptune Trojans as a Test Bed for Planet Formation , 2005, astro-ph/0502276.

[30]  David E. Trilling,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population , 2005 .

[31]  S. Mikkola,et al.  Long-term evolution of the Neptune Trojan 2001 QR322 , 2004 .

[32]  F. Marzari,et al.  The MATROS project: Stability of Uranus and Neptune Trojans. The case of 2001 QR322 , 2003 .

[33]  Luke Dones,et al.  How Long-Lived Are the Hypothetical Trojan Populations of Saturn, Uranus, and Neptune? , 2002 .

[34]  M. Brown,et al.  The Inclination Distribution of the Kuiper Belt , 2001 .

[35]  B. Khushalani,et al.  Orbit Fitting and Uncertainties for Kuiper Belt Objects , 2000, astro-ph/0008348.

[36]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .