Autocatalytic Processing of γ-Glutamyltranspeptidase*

γ-Glutamyltranspeptidase is the key enzyme in glutathione metabolism, and we previously presented evidence suggesting that it belongs to the N-terminal nucleophile hydrolase superfamily. Enzymatically active γ-glutamyltranspeptidase, which consists of one large subunit and one small subunit, is generated from an inactive common precursor through post-translational proteolytic processing. The processing mechanism for γ-glutamyltranspeptidase ofEscherichia coli K-12 has been analyzed by means ofin vitro studies using purified precursors. Here we show that the processing of a precursor of γ-glutamyltranspeptidase is an intramolecular autocatalytic event and that the catalytic nucleophile for the processing reaction is the oxygen atom of the side chain of Thr-391 (N-terminal residue of the small (β) subunit), which is also the nucleophile for the enzymatic reaction.

[1]  T. Earnest,et al.  Precursor Structure of Cephalosporin Acylase: Insights into Auto-Proteolytic Activation in a New N-Terminal Hydrolase Family , 2002, The Journal of Biological Chemistry.

[2]  Sanggu Kim,et al.  Active Site Residues of Cephalosporin Acylase Are Critical Not Only for Enzymatic Catalysis but Also for Post-translational Modification* , 2001, The Journal of Biological Chemistry.

[3]  Hideyuki Suzuki,et al.  Cloning and Random Mutagenesis of the Erwinia herbicola tyrR Gene for High-Level Expression of Tyrosine Phenol-Lyase , 2000, Applied and Environmental Microbiology.

[4]  K. Wilson,et al.  Structure of a slow processing precursor penicillin acylase from Escherichia coli reveals the linker peptide blocking the active-site cleft. , 2000, Journal of molecular biology.

[5]  M. Inoue,et al.  Identification of catalytic nucleophile of Escherichia coli gamma-glutamyltranspeptidase by gamma-monofluorophosphono derivative of glutamic acid: N-terminal thr-391 in small subunit is the nucleophile. , 2000, Biochemistry.

[6]  Hwai-Chen Guo,et al.  Structural Insights into the Mechanism of Intramolecular Proteolysis , 1999, Cell.

[7]  A. Nurk,et al.  Intramolecular autoproteolysis initiates the maturation of penicillin amidase from Escherichia coli. , 1999, Biochimica et biophysica acta.

[8]  W. Jiang,et al.  In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. , 1999, European journal of biochemistry.

[9]  Hideyuki Suzuki,et al.  Glutathione metabolism in Escherichia coli , 1999 .

[10]  Janet L. Smith,et al.  Mutational Analysis of Bacillus subtilisGlutamine Phosphoribosylpyrophosphate Amidotransferase Propeptide Processing , 1999, Journal of bacteriology.

[11]  M. Lieberman,et al.  γ-Glutamyl Leukotrienase, a γ-Glutamyl Transpeptidase Gene Family Member, Is Expressed Primarily in Spleen* , 1998, The Journal of Biological Chemistry.

[12]  Young Sik Lee,et al.  Two-Step Autocatalytic Processing of the Glutaryl 7-Aminocephalosporanic Acid Acylase from Pseudomonas sp. Strain GK16 , 1998, Journal of bacteriology.

[13]  R. Huber,et al.  Conformational constraints for protein self-cleavage in the proteasome. , 1998, Journal of molecular biology.

[14]  H. Paulus,et al.  Characterization and Functional Analysis of the Cis-autoproteolysis Active Center of Glycosylasparaginase* , 1998, The Journal of Biological Chemistry.

[15]  D. Wolf,et al.  The Active Sites of the Eukaryotic 20 S Proteasome and Their Involvement in Subunit Precursor Processing* , 1997, The Journal of Biological Chemistry.

[16]  D. Sugiura,et al.  DNA Sequence of Bacillus subtilis (natto) NR-1 γ-Glutamyltranspeptidase Gene, ggt , 1997 .

[17]  P. Kloetzel,et al.  Analysis of mammalian 20S proteasome biogenesis: the maturation of beta‐subunits is an ordered two‐step mechanism involving autocatalysis. , 1996, The EMBO journal.

[18]  F. Perler,et al.  The mechanism of protein splicing and its modulation by mutation. , 1996, The EMBO journal.

[19]  F. Perler,et al.  Protein Splicing Involving the Saccharomyces cerevisiae VMA Intein , 1996, The Journal of Biological Chemistry.

[20]  Hideyuki Suzuki,et al.  A Preliminary Description of the Crystal Structure of γ-Glutamyltranspeptidase from E. coli K-12 , 1996 .

[21]  M. Strauch,et al.  Identification, sequence, and expression of the gene encoding gamma-glutamyltranspeptidase in Bacillus subtilis , 1996, Journal of bacteriology.

[22]  Y. Ikeda,et al.  Effects of substitutions of the conserved histidine residues in human gamma-glutamyl transpeptidase. , 1996, Journal of biochemistry.

[23]  H. Paulus,et al.  Protein splicing: evidence for an N-O acyl rearrangement as the initial step in the splicing process. , 1996, Biochemistry.

[24]  Jack Benner,et al.  Activation of Glycosylasparaginase , 1996, The Journal of Biological Chemistry.

[25]  Hideyuki Suzuki,et al.  Subunit Association of γ-Glutamyltranspeptidase of Escherichia coli K-12 , 1995 .

[26]  A. Murzin,et al.  A protein catalytic framework with an N-terminal nucleophile is capable of self-activation , 1995, Nature.

[27]  H. Kumagai,et al.  Effect of site-directed mutations on processing and activity of gamma-glutamyltranspeptidase of Escherichia coli K-12. , 1995, Journal of biochemistry.

[28]  W. Baumeister,et al.  The proteasome from Thermoplasma acidophilum is neither a cysteine nor a serine protease , 1995, FEBS letters.

[29]  H. Kumagai,et al.  Escherichia coli K-12 can utilize an exogenous gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase is essential , 1993, Journal of bacteriology.

[30]  S. Makino,et al.  Identification of a novel gene, dep, associated with depolymerization of the capsular polymer in Bacillus anthracis , 1993, Molecular microbiology.

[31]  M. Niwa,et al.  Molecular Cloning of the γ‐Glutamyltranspeptidase Gene from a Pseudomonas Strain , 1993 .

[32]  Hideyuki Suzuki,et al.  Escherichia coli γ-glutamyltranspeptidase mutants deficient in processing to subunits , 1992 .

[33]  N. Heisterkamp,et al.  Identification of a human gamma-glutamyl cleaving enzyme related to, but distinct from, gamma-glutamyl transpeptidase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Hideyuki Suzuki,et al.  DNA sequence of the Escherichia coli K-12 gamma-glutamyltranspeptidase gene, ggt , 1989, Journal of bacteriology.

[35]  H. Gassen,et al.  Cloning and expression of gamma-glutamyl transpeptidase from isolated porcine brain capillaries. , 1989, European journal of biochemistry.

[36]  H. Pitot,et al.  Human γ-glutamyl transpeptidase cDNA: comparison of hepatoma and kidney mRNA in the human and rat , 1989 .

[37]  Taniguchi Naoyuki,et al.  The primary structure of human gamma-glutamyl transpeptidase. , 1988 .

[38]  N. Heisterkamp,et al.  Cloning and nucleotide sequence of human gamma-glutamyl transpeptidase. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Hideyuki Suzuki,et al.  Molecular cloning of Escherichia coli K-12 ggt and rapid isolation of γ-glutamyltranspeptidase , 1988 .

[40]  H. Kumagai,et al.  Isolation, genetic mapping, and characterization of Escherichia coli K-12 mutants lacking gamma-glutamyltranspeptidase , 1987, Journal of bacteriology.

[41]  H. Kumagai,et al.  gamma-Glutamyltranspeptidase from Escherichia coli K-12: purification and properties , 1986, Journal of bacteriology.

[42]  H. Kumagai,et al.  gamma-Glutamyltranspeptidase from Escherichia coli K-12: formation and localization , 1986, Journal of bacteriology.

[43]  H. Pitot,et al.  Characterization and sequence of a cDNA clone of gamma-glutamyltranspeptidase. , 1986, Nucleic acids research.

[44]  J. Hanoune,et al.  Molecular cloning and nucleotide sequence of rat kidney gamma-glutamyl transpeptidase cDNA. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Barouki,et al.  Biosynthesis and processing of gamma-glutamyl transpeptidase in hepatoma tissue culture cells. , 1984, The Journal of biological chemistry.

[46]  C. M. Joyce,et al.  Method for determining whether a gene of Escherichia coli is essential: application to the polA gene , 1984, Journal of bacteriology.

[47]  R. Barouki,et al.  In vitro biosynthesis and membrane insertion of gamma-glutamyl transpeptidase. , 1984, The Journal of biological chemistry.

[48]  S. Tate,et al.  In vitro translation and processing of rat kidney gamma-glutamyl transpeptidase. , 1984, The Journal of biological chemistry.

[49]  T. Kuno,et al.  The conversion of the precursor form of gamma-glutamyltranspeptidase to its subunit form takes place in brush border membranes. , 1983, Biochemical and biophysical research communications.

[50]  T. Kuno,et al.  Biosynthesis and degradation of gamma-glutamyltranspeptidase of rat kidney. , 1983, Journal of biochemistry.

[51]  R. Hughey,et al.  Processing of the propeptide form of rat renal γ‐glutamyltranspeptidase , 1983 .

[52]  N. Katunuma,et al.  Studies on the structure of gamma-glutamyltranspeptidase. III. Evidence that the amino terminus of the heavy subunit is the membrane binding segment. , 1983, Journal of biochemistry.

[53]  S. Tate,et al.  Biosynthesis of rat renal gamma-glutamyl transpeptidase. Evidence for a common precursor of the two subunits. , 1982, The Journal of biological chemistry.

[54]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[55]  A. Meister,et al.  Subunit structure and isozymic forms of gamma-glutamyl transpeptidase. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. Paetzel,et al.  Catalytic hydroxyl/amine dyads within serine proteases. , 1997, Trends in biochemical sciences.

[57]  Hideyuki Suzuki,et al.  Excretion and rapid purification of γ-glutamyltranspeptidase from Escherichia coli K-12 , 1991 .

[58]  J. Vieira,et al.  Production of single-stranded plasmid DNA. , 1987, Methods in enzymology.

[59]  Thomas A. Kunkel,et al.  Rapid and efficient site-specific mutagenesis without phenotypic selection. , 1985, Proceedings of the National Academy of Sciences of the United States of America.