A hierarchical approach for evaluating energy trade-offs in supply chains

Supply chain design and operational decisions may impact the energy needed to keep the products flowing through to the customers. It is a challenge to determine the energy consumption and even more challenging to understand the impact of design and operational decisions on the energy consumption along the supply chain. This paper presents a hierarchical simulation based approach for estimating the energy consumption to keep the products flowing through a supply chain. System dynamics simulation is used at a high abstraction level to understand the major factors that may affect the energy consumption. Discrete event simulation is then used to delve down in detail for evaluating the critical stages in the supply chain. A case study for a closed loop supply chain of forklift brakes is used as an example of application of the approach.

[1]  J. Forrester Industrial Dynamics: A Major Breakthrough for Decision Makers , 2012 .

[2]  Jia Feng,et al.  Analysis on energy-saving and CO2 emissions reduction in BOF steelmaking by substituting limestone for lime to slag , 2011, 2011 International Conference on Materials for Renewable Energy & Environment.

[3]  Teruyuki Yamaoka,et al.  Closed loop supply chains – A study of US and Japanese car industries , 2006 .

[4]  H. S. Matthews,et al.  Quantifying the global and distributional aspects of American household carbon footprint , 2008 .

[5]  G. Cano,et al.  Propuesta de adaptación del modelo supply chain operations reference model (SCOR)versión 10 a PyMEs , 2010 .

[6]  H. S. Matthews,et al.  The importance of carbon footprint estimation boundaries. , 2008, Environmental science & technology.

[7]  Charles R. McLean,et al.  Technical Guidance for the Specification and Development of Homeland Security Simulation Applications , 2012 .

[8]  Fredrik Persson,et al.  Flödessimulering av livsmedelsproduktion; syrade mejeriprodukter , 2007 .

[9]  Björn Johansson,et al.  Data Requirements and Representation for Simulation of Energy Consumption in Production Systems , 2011 .

[10]  Stewart Robinson,et al.  The application of discrete event simulation and system dynamics in the logistics and supply chain context , 2012, Decis. Support Syst..

[11]  David T. Sturrock,et al.  Introduction to Simio , 2008, Proceedings of the 2011 Winter Simulation Conference (WSC).

[12]  Peter Ball,et al.  Steps towards sustainable manufacturing through modelling material, energy and waste flows , 2012 .

[13]  Joaquı́n de Cea Ch,et al.  A multi-modal supply–demand equilibrium model for predicting intercity freight flows , 2003 .

[14]  Chuan Wang,et al.  Development of a method for analysing energy, environmental and economic efficiency for an integrated steel plant , 2006 .

[15]  Amy J. C. Trappey,et al.  System dynamics modelling of product carbon footprint life cycles for collaborative green supply chains , 2012, Int. J. Comput. Integr. Manuf..

[16]  J. Banks,et al.  Discrete-Event System Simulation , 1995 .

[17]  Averill M. Law,et al.  Simulation modelling and analysis , 1991 .

[18]  Jeffrey S. Smith,et al.  How discrete-event simulation software works and why it matters , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).

[19]  Christoph Herrmann,et al.  Energy oriented simulation of manufacturing systems - Concept and application , 2011 .

[20]  Patroklos Georgiadis,et al.  A system dynamics model for dynamic capacity planning of remanufacturing in closed-loop supply chains , 2007, Comput. Oper. Res..

[21]  Olof Runborg,et al.  Multiscale Modeling and Simulation in Science , 2009 .

[22]  Yun Bae Kim,et al.  Supply chain simulation with discrete-continuous combined modeling , 2002 .

[23]  J. Venkateswaran,et al.  Hybrid system dynamic—discrete event simulation-based architecture for hierarchical production planning , 2005 .

[24]  Lennart Olsson,et al.  Categorising tools for sustainability assessment , 2007 .

[25]  Nathan Christensen Forklift Battery Pack and Charger Energy Consumption , 2013 .

[26]  E. Hertwich,et al.  Carbon footprint of nations: a global, trade-linked analysis. , 2009, Environmental science & technology.

[27]  John D. Sterman,et al.  Business dynamics : systems thinking and modelling for acomplex world , 2002 .

[28]  Yang Jian,et al.  Towards a hierarchical supply chain ontology , 2011, ICSSSM11.

[29]  Björn Johansson,et al.  Environmental aspects in manufacturing system modelling and simulation—State of the art and research perspectives , 2013 .

[30]  P. Georgiadis,et al.  Sustainability in electrical and electronic equipment closed-loop supply chains: A System Dynamics approach , 2008 .

[31]  Björn Johansson,et al.  Evaluation of methods used for life-cycle assessments in Discrete Event Simulation , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).

[32]  J.A.E.E. van Nunen,et al.  Designing and Evaluating Sustainable Logistics Networks , 2006 .

[33]  Jonatan Berglund,et al.  A method for determining the environmental footprint of industrial products using simulation , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).

[34]  Charles R. McLean,et al.  A framework for standard modular simulation , 2002, Proceedings of the Winter Simulation Conference.

[35]  Michael J. North,et al.  Agent-based modeling and simulation: introductory tutorial , 2013, WSC '13.

[36]  Matthias Ruth,et al.  Technology change in US iron and steel production: Implications for material and energy use, and CO2 emissions , 1995 .

[37]  Eric W.T. Ngai,et al.  Development of the conceptual model of energy and utility management in textile processing: A soft systems approach , 2012 .

[38]  Stephan M. Wagner,et al.  Modeling carbon footprints across the supply chain , 2010 .

[39]  Charles R. McLean,et al.  A System Dynamics Modeling Framework for Sustainable Manufacturing | NIST , 2009 .

[40]  S. Cholette,et al.  The energy and carbon intensity of wine distribution: A study of logistical options for delivering wine to consumers , 2009 .

[41]  J. Sarkis A boundaries and flows perspective of green supply chain management , 2012 .

[42]  Caroline Johansson,et al.  Flödessimulering av livsmedelsproduktion; Ingemar Johansson i Sverige AB , 2006 .

[43]  J. Linton,et al.  Sustainable supply chains: An introduction , 2007 .

[44]  P. Nieuwenhuis,et al.  Shipping or local production? CO2 impact of a strategic decision: An automotive industry case study , 2012 .

[45]  Willem H.M. Zijm,et al.  Models for warehouse management: Classification and examples , 1999 .

[46]  Gerald Reiner,et al.  Customer-oriented improvement and evaluation of supply chain processes supported by simulation models , 2005 .

[47]  Jiří Jaromír Klemeš,et al.  Minimising carbon footprint of regional biomass supply chains , 2010 .

[48]  Bert Bras,et al.  Improving Life Cycle Assessment by Including Spatial, Dynamic and Place-Based Modeling , 2003 .

[49]  Günther Seliger,et al.  Methodology for planning and operating energy-efficient production systems , 2011 .

[50]  Alan C. Price,et al.  Reducing industrial electricity costs--an automative case study , 1989 .