Alloy inhomogeneity and carrier localization in AlGaN sections and AlGaN/AlN nanodisks in nanowires with 240–350 nm emission

We present structural and optical studies of AlGaN sections and AlGaN/AlN nanodisks (NDs) in nanowires grown by plasma-assisted molecular beam epitaxy. The Al-Ga intermixing at Al(Ga)N/GaN interfaces and the chemical inhomogeneity in AlGaN NDs evidenced by scanning transmission electron microscopy are attributed to the strain relaxation process. This interpretation is supported by the three-dimensional strain distribution calculated by minimizing the elastic energy in the structure. The alloy inhomogeneity increases with the Al content, leading to enhanced carrier localization signatures in the luminescence characteristics, i.e., red shift of the emission, s-shaped temperature dependence, and linewidth broadening. Despite these effects, the emission energy of AlGaN/AlN NDs can be tuned in the 240–350 nm range with internal quantum efficiencies around 30%.

[1]  M. Albrecht,et al.  Chemically ordered AlGaN alloys: Spontaneous formation of natural quantum dots , 2005 .

[2]  T. Moustakas,et al.  Long range order in AlxGa1−xN films grown by molecular beam epitaxy , 1997 .

[3]  J. A. Tuchman,et al.  Spontaneous compositional modulation in the AlGaN layers of a thick AlGaN/GaN multilayer structure , 2001 .

[4]  H. Lüth,et al.  Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. , 2007, Nano letters.

[5]  B. Daudin,et al.  From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer , 2007 .

[6]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[7]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[8]  E. Monroy,et al.  Identification of III–N nanowire growth kinetics via a marker technique , 2010, Nanotechnology.

[9]  M. Khan,et al.  Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers , 2006 .

[10]  T. Ben,et al.  Imaging and Analysis by Transmission Electron Microscopy of the Spontaneous Formation of Al-Rich Shell Structure in AlxGa1-xN/GaN Nanowires , 2012 .

[11]  Bruno Gayral,et al.  Quantum-confined Stark effect in GaN/AlN quantum dots in nanowires , 2009 .

[12]  H. Kuo,et al.  High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability , 2014, Scientific Reports.

[13]  L. Kirste,et al.  Pyramidal-plane ordering in AlGaN alloys , 2003 .

[14]  Yasuhiko Arakawa,et al.  A gallium nitride single-photon source operating at 200 K , 2006, Nature materials.

[15]  E. Monroy,et al.  Correlation of polarity and crystal structure with optoelectronic and transport properties of GaN/AlN/GaN nanowire sensors. , 2012, Nano letters.

[16]  Yoichi Kawakami,et al.  100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam , 2010 .

[17]  Theodore D. Moustakas,et al.  Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy , 1998 .

[18]  K. B. Nam,et al.  Unique optical properties of AlGaN alloys and related ultraviolet emitters , 2004 .

[19]  H. Renevier,et al.  Growth, structural and optical properties of AlGaN nanowires in the whole composition range , 2013, Nanotechnology.

[20]  E. Monroy,et al.  Thermal stability of the deep ultraviolet emission from AlGaN/AlN Stranski-Krastanov quantum dots , 2012 .

[21]  A. Andreev,et al.  Strain distribution in GaN∕AlN quantum-dot superlattices , 2005 .

[22]  Kai Cui,et al.  High efficiency ultraviolet emission from AlxGa1−xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy , 2012 .

[23]  W. Schaff,et al.  Spontaneous compositional superlattice and band-gap reduction in Si-doped AlxGa1−xN epilayers , 2005 .