Development of Middle Cambrian leiolitic bioherms dominated by calcified microbes: A case study of the Xinji Section (North China Platform)

[1]  Q. Meng,et al.  Thrombolitic clots dominated by filamentous cyanobacteria and crusts of radio-fibrous calcite in the Furongian Changshan Formation, North China , 2020 .

[2]  K. Latif,et al.  Calcified cyanobacteria fossils from the leiolitic bioherm in the Furongian Changshan Formation, Datong (North China Platform) , 2018, Carbonates and Evaporites.

[3]  K. Latif,et al.  Sequence-Stratigraphic Position of Oolitic Bank of Cambrian in North China Platform: Example from the Kelan Section of Shanxi Province , 2018, Arabian Journal for Science and Engineering.

[4]  R. Reid,et al.  Living Dendrolitic Microbial Mats in Hamelin Pool, Shark Bay, Western Australia , 2018, Geosciences.

[5]  Y. Ezaki,et al.  Stacking patterns and growth models of multiscopic structures within Cambrian Series 3 thrombolites at the Jiulongshan section, Shandong Province, northern China , 2017 .

[6]  J. Lü,et al.  The sedimentological characteristics of microbialites of the Cambrian in the vicinity of Beijing, China , 2017 .

[7]  F. Corsetti,et al.  Lateral Comparative Investigation of Stromatolites: Astrobiological Implications and Assessment of Scales of Control. , 2016, Astrobiology.

[8]  P. G. Eriksson,et al.  Forced regressive wedge in the Mesoproterozoic Koldaha Shale, Vindhyan basin, Son Valley, central India , 2016 .

[9]  D. Fike,et al.  Depositional history, tectonics, and provenance of the Cambrian-Ordovician boundary interval in the western margin of the North China block , 2015 .

[10]  Y. Ezaki,et al.  Cambrian Series 3 lithistid sponge–microbial reefs in Shandong Province, North China: reef development after the disappearance of archaeocyaths , 2015 .

[11]  Linda C. Kah,et al.  Deep‐water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites , 2015, Geobiology.

[12]  Mei Mingxian Stromatolitic Biostrome of the Cambrian Fengshan Formation at the Xiaweidian Section in the Western Suburb of Beijing,North China , 2015 .

[13]  Mei Mingxian CONCEPTUAL CHANGE FROM DEPOSITIONAL SEQUENCES TO EUSTATIC SEQUENCES:AN IMPORTANT DEVELOPMENT IN SEQUENCE STRATIGRAPHY , 2015 .

[14]  J. Woo,et al.  Formative mechanisms, depositional processes, and geological implications of Furongian (late Cambrian) reefs in the North China Platform , 2014 .

[15]  Y. Ezaki,et al.  The late early Cambrian microbial reefs immediately after the demise of archaeocyathan reefs, Hunan Province, South China , 2014 .

[16]  Zhang Wen-ha Oncolites from Lower-Middle Cambrian Transition of the Western North China Platform: A Study of Their Ultra-fabrics and Biomineralization , 2014 .

[17]  Dai Ming-yu Oncoids and Their Significance from the Second Member of the Mantou Formation(Cambrian Series 3),Dengfeng Area,Henan , 2014 .

[18]  Wenjiao Xiao,et al.  Introduction to tectonics of China , 2013 .

[19]  J. Woo,et al.  Middle Cambrian siliceous sponge-calcimicrobe buildups (Daegi Formation, Korea): Metazoan buildup constituents in the aftermath of the Early Cambrian extinction event , 2012 .

[20]  S. Wilde,et al.  Precambrian crustal evolution of the eastern North China Craton as revealed by U-Pb ages and Hf isotopes of detrital zircons from the Proterozoic Jing'eryu Formation , 2012 .

[21]  L. Collins,et al.  Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia , 2012 .

[22]  D. Moreira,et al.  Prokaryotic and Eukaryotic Community Structure in Field and Cultured Microbialites from the Alkaline Lake Alchichica (Mexico) , 2011, PloS one.

[23]  S. Chough,et al.  Depositional processes of the Zhushadong and Mantou formations (Early to Middle Cambrian), Shandong Province, China: roles of archipelago and mixed carbonate–siliciclastic sedimentation on cycle genesis during initial flooding of the North China Platform , 2011 .

[24]  B. Su,et al.  Continental growth and secular evolution: Constraints from U-Pb ages and Hf isotope of detrital zircons in Proterozoic Jixian sedimentary section (1.8-0.8 Ga), North China Craton , 2011 .

[25]  P. Myrow,et al.  Trilobites and zircons link north China with the eastern Himalaya during the Cambrian , 2011 .

[26]  Mei Ming-xiang Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform: a case study of the Xiaweidian section in the western suburb of Beijing , 2011 .

[27]  M. Min Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing , 2011 .

[28]  J. Woo,et al.  Cambrian stratigraphy of the North China Platform: revisiting principal sections in Shandong Province, China , 2010 .

[29]  J. Woo,et al.  Growth patterns of the Cambrian microbialite: Phototropism and speciation of Epiphyton , 2010 .

[30]  R. Reid,et al.  Processes of carbonate precipitation in modern microbial mats , 2009 .

[31]  V. Luchinina Remalcis and Epiphyton as different stages in the life cycle of calcareous algae , 2009 .

[32]  G. Warrlich,et al.  Record of sea‐level fall in tropical carbonates , 2009 .

[33]  Han Zuozhen Characteristics of Epiphyton and Epiphyton Microbialites in the Zhangxia Formation(Third Series of Cambrian),Shandong Province , 2009 .

[34]  W. E. Galloway,et al.  Towards the standardization of sequence stratigraphy , 2009 .

[35]  V. Luchinina,et al.  The morphology of the genus Epiphyton BORNEMANN , 2008 .

[36]  E. Gischler,et al.  Giant Holocene Freshwater Microbialites, Laguna Bacalar, Quintana Roo, Mexico , 2008 .

[37]  Q. Meng,et al.  Glauconites Formed in the High-energy Shallow-Marine Environment of the Late Mesoproterozoic: Case Study from Tieling Formation at Jixian Section in Tianjin, North China , 2008 .

[38]  Dang Haowen Microbialites in the Middle Cambrian Qinjiamiao Group in Xingshan,Hubei Province:Implication for Paleoenvironmental Reconstruction , 2008 .

[39]  J. Woo,et al.  CHAMBERS OF EPIPHYTON THALLI IN MICROBIAL BUILDUPS, ZHANGXIA FORMATION (MIDDLE CAMBRIAN), SHANDONG PROVINCE, CHINA , 2008 .

[40]  Mingxiang Mei,et al.  Revised Classification of Microbial Carbonates: Complementing the Classification of Limestones , 2007 .

[41]  Mingxiang Mei,et al.  Implications of the Precambrian Non-stromatolitic Carbonate Succession Making up the Third Member of Mesoproterozoic Gaoyuzhuang Formation in Yanshan Area of North China , 2007 .

[42]  S. Chough,et al.  Sequence stratigraphy of the Taebaek Group (Cambrian–Ordovician), mideast Korea , 2006 .

[43]  R. Reid,et al.  Growth morphologies of modern marine stromatolites: A case study from Highborne Cay, Bahamas , 2006 .

[44]  R. Riding Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time , 2006 .

[45]  R. Reid,et al.  Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries , 2006 .

[46]  P. Harris,et al.  Steep microbial boundstone-dominated plaform margins , 2005 .

[47]  Deng Jun,et al.  From Cycles to Sequences: Sequence Stratigraphy and Relative Sea Level Change for the Late Cambrian of the North China Platform , 2005 .

[48]  L. Liang,et al.  Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic , 2005 .

[49]  J. Kenter Steep microbial boundstone-dominated platform margins—examples and implications B , 2005 .

[50]  Pieter T. Visscher,et al.  Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas) , 2004 .

[51]  B. Runnegar,et al.  The Late Cambrian Spice (δ13C) Event and the Sauk II-SAUK III Regression: New Evidence from Laurentian Basins in Utah, Iowa, and Newfoundland , 2004 .

[52]  A. Strasser,et al.  Nutritional Modes in Coral—Microbialite Reefs (Jurassic, Oxfordian, Switzerland): Evolution of Trophic Structure as a Response to Environmental Change , 2002 .

[53]  R. Riding Structure and composition of organic reefs and carbonate mud mounds: concepts and categories , 2002 .

[54]  J. Schieber Sedimentary pyrite: A window into the microbial past , 2002 .

[55]  M. Santosh,et al.  Configuration of Columbia, a Mesoproterozoic Supercontinent , 2002 .

[56]  R. Shapiro,et al.  Reef Patterns and Environmental Influences in the Cambrian and Earliest Ordovician , 2002 .

[57]  W. Kiessling,et al.  Phanerozoic reef patterns , 2002 .

[58]  L. Pomar Types of carbonate platforms: a genetic approach , 2001 .

[59]  B. Pratt Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud , 2001 .

[60]  A. Reimer,et al.  Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic Oceans , 2001, Science.

[61]  R. Riding,et al.  Ecology and evolution of Cambrian reefs , 2001 .

[62]  H. Paerl,et al.  The role of microbes in accretion, lamination and early lithification of modern marine stromatolites , 2000, Nature.

[63]  Robert Riding,et al.  Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms , 2000 .

[64]  S. Golubić,et al.  Cyanobacteria: Architects of Sedimentary Structures , 2000 .

[65]  A. Strasser,et al.  Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura mountains) , 1999 .

[66]  R. Riding,et al.  Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes , 1999 .

[67]  W. Schlager Type 3 Sequence Boundaries , 1999 .

[68]  M. Tucker,et al.  Sequence Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform , 1997 .

[69]  Mei Mingxiang The third-order carbonate cyclic sequences of drowned unconformity type with discussions on condensation of carbonate platforms , 1996 .

[70]  R. Riding,et al.  Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain , 1995 .

[71]  M. Merz,et al.  Biology of carbonate precipitation by cyanobacteria , 1992 .

[72]  H. Chafetz,et al.  Bacterially Induced Lithification of Microbial Mats , 1992 .

[73]  M. Merz,et al.  The biology of carbonate precipitation by cyanobacteria , 1992 .

[74]  R. Riding Cambrian Calcareous Cyanobacteria and Algae , 1991 .

[75]  J. Bauld,et al.  Lake thetis, western australia: An example of saline lake sedimentation dominated by benthic microbial processes , 1990 .

[76]  R. Burne,et al.  Microbialites; organosedimentary deposits of benthic microbial communities , 1987 .

[77]  R. Riding,et al.  Morphological Groups and Series in Cambrian Calcareous Algae , 1985 .

[78]  B. Pratt Epiphyton and Renalcis; diagenetic microfossils from calcification of coccoid blue-green algae , 1984 .

[79]  B. Pratt,et al.  Epiphyton and Renalcis--Diagenetic Microfossils from Calcification of Coccoid Blue-Green Algae: ABSTRACT , 1982 .

[80]  J. D. Aitken Classification and Environmental Significance of Cryptalgal Limestones and Dolomites, with Illustrations from the Cambrian and Ordovician of Southwestern Alberta , 1967 .

[81]  Ernst Kalkowsky Oolith und Stromatolith im norddeutschen Buntsandstein. , 1908 .