The Genome of Nitrospina gracilis Illuminates the Metabolism and Evolution of the Major Marine Nitrite Oxidizer

In marine systems, nitrate is the major reservoir of inorganic fixed nitrogen. The only known biological nitrate-forming reaction is nitrite oxidation, but despite its importance, our knowledge of the organisms catalyzing this key process in the marine N-cycle is very limited. The most frequently encountered marine NOB are related to Nitrospina gracilis, an aerobic chemolithoautotrophic bacterium isolated from ocean surface waters. To date, limited physiological and genomic data for this organism were available and its phylogenetic affiliation was uncertain. In this study, the draft genome sequence of N. gracilis strain 3/211 was obtained. Unexpectedly for an aerobic organism, N. gracilis lacks classical reactive oxygen defense mechanisms and uses the reductive tricarboxylic acid cycle for carbon fixation. These features indicate microaerophilic ancestry and are consistent with the presence of Nitrospina in marine oxygen minimum zones. Fixed carbon is stored intracellularly as glycogen, but genes for utilizing external organic carbon sources were not identified. N. gracilis also contains a full gene set for oxidative phosphorylation with oxygen as terminal electron acceptor and for reverse electron transport from nitrite to NADH. A novel variation of complex I may catalyze the required reverse electron flow to low-potential ferredoxin. Interestingly, comparative genomics indicated a strong evolutionary link between Nitrospina, the nitrite-oxidizing genus Nitrospira, and anaerobic ammonium oxidizers, apparently including the horizontal transfer of a periplasmically oriented nitrite oxidoreductase and other key genes for nitrite oxidation at an early evolutionary stage. Further, detailed phylogenetic analyses using concatenated marker genes provided evidence that Nitrospina forms a novel bacterial phylum, for which we propose the name Nitrospinae.

[1]  Philipp G Schleidt,et al.  Electroneutral and electrogenic catalysis by dihaem-containing succinate:quinone oxidoreductases. , 2008, Biochemical Society transactions.

[2]  P. Hugenholtz,et al.  Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin‐containing enzymes , 2002, Molecular microbiology.

[3]  R. Huber,et al.  Early evolution of cytochrome bc complexes. , 2000, Journal of molecular biology.

[4]  T. Kunisawa Evaluation of the phylogenetic position of the sulfate-reducing bacterium Thermodesulfovibrio yellowstonii (phylum Nitrospirae) by means of gene order data from completely sequenced genomes. , 2010, International journal of systematic and evolutionary microbiology.

[5]  F. Sargent,et al.  A genetic analysis of in vivo selenate reduction by Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12 , 2009, Archives of Microbiology.

[6]  W. Ludwig,et al.  A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium,Nitrospira moscoviensis sp. nov. and its phylogenetic relationship , 1995, Archives of Microbiology.

[7]  C. W. Tabor,et al.  Polyamines protect Escherichia coli cells from the toxic effect of oxygen , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Ishii,et al.  Anabolic five subunit-type pyruvate:ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6. , 2006, Biochemical and biophysical research communications.

[9]  M. Labrenz,et al.  Distribution of abundant prokaryotic organisms in the water column of the central Baltic Sea with an oxic-anoxic interface , 2007 .

[10]  F. Robb,et al.  Enzymes of hydrogen metabolism in Pyrococcus furiosus. , 2000, European journal of biochemistry.

[11]  C. Lancaster,et al.  Succinate:quinone oxidoreductases from epsilon-proteobacteria. , 2002, Biochimica et biophysica acta.

[12]  M. Adams,et al.  Characterization of Hydrogenase II from the Hyperthermophilic Archaeon Pyrococcus furiosus and Assessment of Its Role in Sulfur Reduction , 2000, Journal of bacteriology.

[13]  T. Yagi,et al.  Characterization of the Putative 2×[4Fe-4S]-binding NQO9 Subunit of the Proton-translocating NADH-Quinone Oxidoreductase (NDH-1) of Paracoccus denitrificans , 1999, The Journal of Biological Chemistry.

[14]  Manuela M. Pereira,et al.  A novel scenario for the evolution of haem-copper oxygen reductases. , 2001, Biochimica et biophysica acta.

[15]  B. Griffin,et al.  Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17. , 2010, Microbiology.

[16]  G. Sposito,et al.  Bacteriogenic manganese oxides. , 2010, Accounts of chemical research.

[17]  Gerard Talavera,et al.  Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. , 2007, Systematic biology.

[18]  J. Heider,et al.  Ethylbenzene Dehydrogenase, a Novel Hydrocarbon-oxidizing Molybdenum/Iron-Sulfur/Heme Enzyme* , 2001, The Journal of Biological Chemistry.

[19]  Thomas Rattei,et al.  A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria , 2010, Proceedings of the National Academy of Sciences.

[20]  J. T. Staley,et al.  Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. , 2011, FEMS microbiology ecology.

[21]  E. Delong,et al.  Community Genomics Among Stratified Microbial Assemblages in the Ocean's Interior , 2006, Science.

[22]  B. Schink,et al.  Anaerobic phototrophic nitrite oxidation by Thiocapsa sp . strain KS 1 and Rhodopseudomonas sp , 2010 .

[23]  R. Gupta,et al.  The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. , 2000, FEMS microbiology reviews.

[24]  Philip Hinchliffe,et al.  Structure of the Hydrophilic Domain of Respiratory Complex I from Thermus thermophilus , 2006, Science.

[25]  C. Schleper,et al.  Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge , 2012, Proceedings of the National Academy of Sciences.

[26]  G. Unden,et al.  Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential. , 1998, European journal of biochemistry.

[27]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[28]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[29]  V. Bonnefoy,et al.  Insight into the evolution of the iron oxidation pathways. , 2013, Biochimica et biophysica acta.

[30]  S. Silver,et al.  Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[31]  C. Vetriani,et al.  Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. , 2007, Environmental microbiology.

[32]  M. Strous,et al.  Biochemistry and molecular biology of anammox bacteria , 2009, Critical reviews in biochemistry and molecular biology.

[33]  T. Kunisawa Inference of the phylogenetic position of the phylum Deferribacteres from gene order comparison , 2011, Antonie van Leeuwenhoek.

[34]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[35]  Stefan Schouten,et al.  Cultivation of Autotrophic Ammonia-Oxidizing Archaea from Marine Sediments in Coculture with Sulfur-Oxidizing Bacteria , 2010, Applied and Environmental Microbiology.

[36]  G. Unden,et al.  Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase. , 2001, European journal of biochemistry.

[37]  J. Valentine,et al.  Manganous phosphate acts as a superoxide dismutase. , 2008, Journal of the American Chemical Society.

[38]  Nicolas Gruber,et al.  The Marine Nitrogen Cycle: Overview and Challenges , 2008 .

[39]  C. D. Clegg,et al.  Influence of Inorganic Nitrogen Management Regime on the Diversity of Nitrite-Oxidizing Bacteria in Agricultural Grassland Soils , 2005, Applied and Environmental Microbiology.

[40]  S. Selenska-Pobell,et al.  Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and ribosomal intergenic spacer amplification retrievals. , 2005, Canadian journal of microbiology.

[41]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[42]  A. Guss,et al.  Assignment of the [4Fe‐4S] clusters of Ech hydrogenase from Methanosarcina barkeri to individual subunits via the characterization of site‐directed mutants , 2005, The FEBS journal.

[43]  E. Spieck,et al.  Isolation and immunocytochemical location of the nitrite-oxidizing system in Nitrospira moscoviensis , 1998, Archives of Microbiology.

[44]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[45]  Harald Meier,et al.  46. ARB: A Software Environment for Sequence Data , 2011 .

[46]  D. Richardson,et al.  Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. , 2004, Structure.

[47]  P. Vignais,et al.  Occurrence, classification, and biological function of hydrogenases: an overview. , 2007, Chemical reviews.

[48]  A. Maass,et al.  Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations , 2008, BMC Genomics.

[49]  U. Kappler,et al.  Sulfite:Cytochrome c oxidoreductase from Thiobacillus novellus. Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family. , 2000, The Journal of biological chemistry.

[50]  S. Ragsdale,et al.  Function of Ech Hydrogenase in Ferredoxin-Dependent, Membrane-Bound Electron Transport in Methanosarcina mazei , 2009, Journal of bacteriology.

[51]  Ming L. Wu,et al.  Nitrite-driven anaerobic methane oxidation by oxygenic bacteria , 2010, Nature.

[52]  D. Stahl,et al.  Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria , 1994, Journal of bacteriology.

[53]  Renzo Kottmann,et al.  A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. , 2008, Systematic and applied microbiology.

[54]  T. Hansen Bergey's Manual of Systematic Bacteriology , 2005 .

[55]  C. Cosseau,et al.  Genomics of the ccoNOQP-encoded cbb3 oxidase complex in bacteria , 2004, Archives of Microbiology.

[56]  A. Freitag,et al.  Energy conservation in Nitrobacter , 1990 .

[57]  N. Cosper,et al.  Novel [2Fe-2S]-type Redox Center C in SdhC of Archaeal Respiratory Complex II from Sulfolobus tokodaii Strain 7* , 2002, The Journal of Biological Chemistry.

[58]  J. Weiner,et al.  The prokaryotic complex iron-sulfur molybdoenzyme family. , 2008, Biochimica et biophysica acta.

[59]  R. Gennis,et al.  The cytochrome bd respiratory oxygen reductases. , 2011, Biochimica et biophysica acta.

[60]  Karen J. Murray,et al.  Biogenic manganese oxides: Properties and mechanisms of formation , 2004 .

[61]  R. Read,et al.  Swiveling domain mechanism in pyruvate phosphate dikinase. , 2007, Biochemistry.

[62]  A. Santoro,et al.  Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. , 2010, Environmental microbiology.

[63]  C. G. Wheat,et al.  Bacterial Variability within an Iron-Silica-Manganese-rich Hydrothermal Mound Located Off-axis at the Cleft Segment, Juan de Fuca Ridge , 2009 .

[64]  M. Shumkov,et al.  Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. , 2012, Research in microbiology.

[65]  J. C. van den Heuvel,et al.  Microscale Distribution of Populations and Activities ofNitrosospira and Nitrospira spp. along a Macroscale Gradient in a Nitrifying Bioreactor: Quantification by In Situ Hybridization and the Use of Microsensors , 1999, Applied and Environmental Microbiology.

[66]  D. Le Paslier,et al.  Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi , 2012, The ISME Journal.

[67]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[68]  S. Starkenburg,et al.  Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255. , 2008, Environmental microbiology.

[69]  K. Schleifer,et al.  In Situ Characterization ofNitrospira-Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants , 2001, Applied and Environmental Microbiology.

[70]  U. Sauer,et al.  The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis. , 2004, Metabolic engineering.

[71]  K. Stetter,et al.  The unusual iron sulfur composition of the Acidianus ambivalens succinate dehydrogenase complex. , 1999, Biochimica et biophysica acta.

[72]  M. Kuypers,et al.  Nitrite oxidation in the Namibian oxygen minimum zone , 2011, The ISME Journal.

[73]  Rudolf Amann,et al.  Molecular identification of picoplankton populations in contrasting waters of the Arabian Sea , 2005 .

[74]  G. Cecchini,et al.  Anaerobic Expression of Escherichia coli Succinate Dehydrogenase: Functional Replacement of Fumarate Reductase in the Respiratory Chain during Anaerobic Growth , 1998, Journal of bacteriology.

[75]  J. Waterbury,et al.  Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp. , 1971, Archiv für Mikrobiologie.

[76]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[77]  I. Berg Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways , 2011, Applied and Environmental Microbiology.

[78]  R. Gennis,et al.  Proton pumping by cytochrome oxidase: progress, problems and postulates. , 2000, Biochimica et biophysica acta.

[79]  E. Bock,et al.  Membrane-bound nitrite oxidoreductase of Nitrobacter: evidence for a nitrate reductase system , 1984, Archives of Microbiology.

[80]  G. Garrity Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.

[81]  R. Thauer,et al.  Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. , 2013, Biochimica et biophysica acta.

[82]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[83]  O. Farver,et al.  Intramolecular electron transfer in nitrite reductases. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[84]  T. Kunisawa Dichotomy of major bacterial phyla inferred from gene arrangement comparisons. , 2006, Journal of theoretical biology.

[85]  Manuela M. Pereira,et al.  Quinol:fumarate oxidoreductases and succinate:quinone oxidoreductases: phylogenetic relationships, metal centres and membrane attachment. , 2002, Biochimica et biophysica acta.

[86]  B. Snel,et al.  SHOT: a web server for the construction of genome phylogenies. , 2002, Trends in genetics : TIG.

[87]  E. Delong,et al.  Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. , 2007, Environmental microbiology.

[88]  A. Elbehti,et al.  First Evidence for Existence of an Uphill Electron Transfer through the bc1 and NADH-Q Oxidoreductase Complexes of the Acidophilic Obligate Chemolithotrophic Ferrous Ion-Oxidizing Bacterium Thiobacillus ferrooxidans , 2000, Journal of bacteriology.

[89]  S. Silver,et al.  Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[90]  P. Dimroth,et al.  Carboxylation of pyruvate and acetyl coenzyme A by reversal of the sodium pumps oxaloacetate decarboxylase and methylmalonyl-CoA decarboxylase , 1984 .

[91]  M. Ishii,et al.  Purification and characterization of pyruvate:ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6 , 1997, Archives of Microbiology.

[92]  J. Handelsman,et al.  Status of the Microbial Census , 2004, Microbiology and Molecular Biology Reviews.

[93]  R. M. Martínez-Espinosa,et al.  Look on the positive side! The orientation, identification and bioenergetics of 'Archaeal' membrane-bound nitrate reductases. , 2007, FEMS microbiology letters.

[94]  E. Spieck,et al.  The Lithoautotrophic Nitrite-Oxidizing Bacteria , 2015 .

[95]  M. Hildebrand,et al.  Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1 , 1996, Journal of bacteriology.

[96]  J. Keltjens,et al.  Proteins and protein complexes involved in the biochemical reactions of anaerobic ammonium-oxidizing bacteria. , 2011, Biochemical Society transactions.

[97]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[98]  V. Müller,et al.  Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase , 2010, Proceedings of the National Academy of Sciences.

[99]  E. Spieck,et al.  Nitrospina Watson and Waterbury 1971, 225 AL , 2005 .

[100]  T. Sone,et al.  Thermophilic bacilli have split cytochrome b genes for cytochrome b6 and subunit IV. First cloning of cytochrome b from a gram-positive bacterium (Bacillus stearothermophilus). , 1995, The Journal of biological chemistry.

[101]  E. Jayamani,et al.  Energy Conservation via Electron-Transferring Flavoprotein in Anaerobic Bacteria , 2007, Journal of bacteriology.

[102]  T. Takao,et al.  A screen for potential ferredoxin electron transfer partners uncovers new, redox dependent interactions. , 2011, Biochimica et biophysica acta.

[103]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[104]  Dmitrij Frishman,et al.  Deciphering the evolution and metabolism of an anammox bacterium from a community genome , 2006, Nature.

[105]  H. Stan-Lotter,et al.  Communities of Archaea and Bacteria in a Subsurface Radioactive Thermal Spring in the Austrian Central Alps, and Evidence of Ammonia-Oxidizing Crenarchaeota , 2006, Applied and Environmental Microbiology.

[106]  T. Fukui,et al.  ATP-citrate lyase from the green sulfur bacterium Chlorobium limicola is a heteromeric enzyme composed of two distinct gene products. , 2001, European journal of biochemistry.

[107]  M. Dewhirst,et al.  Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. , 2011, Free radical biology & medicine.

[108]  H. Michel,et al.  The Structure of cbb3 Cytochrome Oxidase Provides Insights into Proton Pumping , 2010, Science.

[109]  G. Sposito,et al.  Manganese(III) binding to a pyoverdine siderophore produced by a manganese(II)-oxidizing bacterium , 2004 .

[110]  R. Gunsalus,et al.  Succinate dehydrogenase and fumarate reductase from Escherichia coli. , 2002, Biochimica et biophysica acta.

[111]  N. Revsbech,et al.  Widespread functional anoxia in the oxygen minimum zone of the Eastern South Pacific , 2012 .

[112]  Andrei N Lupas,et al.  PhyloGenie: automated phylome generation and analysis. , 2004, Nucleic acids research.

[113]  T. Cavalier-smith,et al.  Rooting the tree of life by transition analyses , 2006, Biology Direct.

[114]  C. Médigue,et al.  MaGe: a microbial genome annotation system supported by synteny results , 2006, Nucleic acids research.

[115]  M. Alawi,et al.  Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic , 2007, The ISME Journal.

[116]  B. Tebo,et al.  Soluble Mn(III) in Suboxic Zones , 2006, Science.

[117]  T. Swartz,et al.  Catalytic Properties of Staphylococcus aureus and Bacillus Members of the Secondary Cation/Proton Antiporter-3 (Mrp) Family Are Revealed by an Optimized Assay in an Escherichia coli Host , 2007, Journal of bacteriology.

[118]  Ια,et al.  Energy Converting NADH : Quinone Oxidoreductase ( Complex I ) , 2012 .

[119]  Erik L. L. Sonnhammer,et al.  Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server , 2007, Nucleic Acids Res..

[120]  S. Carroll,et al.  Genome-scale approaches to resolving incongruence in molecular phylogenies , 2003, Nature.

[121]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[122]  K. Paszkiewicz,et al.  Quinol-cytochrome c Oxidoreductase and Cytochrome c4 Mediate Electron Transfer during Selenate Respiration in Thauera selenatis* , 2010, The Journal of Biological Chemistry.

[123]  J. Kostka,et al.  Microbial Community Diversity Associated with Carbon and Nitrogen Cycling in Permeable Shelf Sediments , 2006, Applied and Environmental Microbiology.

[124]  E. Spieck,et al.  Identification of Nitrite-Oxidizing Bacteria with Monoclonal Antibodies Recognizing the Nitrite Oxidoreductase , 1999, Applied and Environmental Microbiology.

[125]  M. Ishii,et al.  Purification and characterization of 2-oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately chemolithoautotrophic bacterium, Hydrogenobacter thermophilus TK-6 , 1996, Journal of bacteriology.

[126]  S. Anemüller,et al.  A succinate dehydrogenase with novel structure and properties from the hyperthermophilic archaeon Sulfolobus acidocaldarius: genetic and biophysical characterization , 1997, Journal of bacteriology.

[127]  A. Post,et al.  The cyanate utilization capacity of marine unicellular Cyanobacteria , 2008 .

[128]  Professor Dr. Martino Rizzotti Early Evolution , 2000, Birkhäuser Basel.

[129]  E. Spieck,et al.  Immunological Detection of Nitrospira-like Bacteria in Various Soils , 2001, Microbial Ecology.

[130]  Stefan Engelen,et al.  MicroScope: a platform for microbial genome annotation and comparative genomics , 2009, Database J. Biol. Databases Curation.

[131]  C. Gomes,et al.  Acidianus ambivalens Complex II typifies a novel family of succinate dehydrogenases. , 2001, Biochemical and biophysical research communications.

[132]  Radhey S. Gupta,et al.  Critical issues in bacterial phylogeny. , 2002, Theoretical population biology.

[133]  Ikuo Uchiyama,et al.  MBGD update 2010: toward a comprehensive resource for exploring microbial genome diversity , 2009, Nucleic Acids Res..

[134]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[135]  Radhey S. Gupta,et al.  The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins , 2001, International microbiology : the official journal of the Spanish Society for Microbiology.

[136]  C. Dussap,et al.  Energy model and metabolic flux analysis for autotrophic nitrifiers. , 2001, Biotechnology and bioengineering.

[137]  Thomas Ludwig,et al.  RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees , 2005, Bioinform..