Uranium and thorium complexes of the phosphaethynolate ion

New tris-amidinate actinide (Th, U) complexes containing a rare O-bound terminal phosphaethynolate (OCP–) ligand were synthesized and fully characterized.

[1]  S. Aldridge,et al.  E–H Bond Activation of Ammonia and Water by a Geometrically Constrained Phosphorus(III) Compound , 2015, Angewandte Chemie.

[2]  J. Goicoechea,et al.  Cyclo-oligomerization of isocyanates with Na(PH2) or Na(OCP) as “P–” anion sources , 2015, Chemical science.

[3]  H. Schaefer,et al.  Carbonyl migration from phosphorus to the metal in binuclear phosphaketenyl metal carbonyl complexes to give bridging diphosphido complexes , 2015 .

[4]  J. Pécaut,et al.  CS2 activation at uranium(III) siloxide ate complexes: the effect of a Lewis acidic site. , 2015, Dalton transactions.

[5]  Michael J. Cowley,et al.  Phosphide Delivery to a Cyclotrisilene , 2014, Angewandte Chemie.

[6]  H. Grützmacher,et al.  Phosphaketenes as building blocks for the synthesis of triphospha heterocycles. , 2014, Chemistry.

[7]  L. Maron,et al.  Controlling selectivity in the reductive activation of CO2 by mixed sandwich uranium(III) complexes , 2014 .

[8]  A. J. Blake,et al.  Two-Electron Reductive Carbonylation of Terminal Uranium(V) and Uranium(VI) Nitrides to Cyanate by Carbon Monoxide** , 2014, Angewandte Chemie.

[9]  A. J. Blake,et al.  The Ketimide Ligand is Not Just an Inert Spectator: Heteroallene Insertion Reactivity of an Actinide–Ketimide Linkage in a Thorium Carbene Amide Ketimide Complex** , 2014, Angewandte Chemie.

[10]  N. Fridman,et al.  Dimethylsilyl bis(amidinate)actinide complexes: synthesis and reactivity towards oxygen containing substrates. , 2014, Dalton transactions.

[11]  S. Roe,et al.  Formation of cyanates in low-valent uranium chemistry: a synergistic experimental/theoretical study. , 2014, Dalton transactions.

[12]  H. Grützmacher,et al.  Redox-triggered reversible interconversion of a monocyclic and a bicyclic phosphorus heterocycle. , 2014, Angewandte Chemie.

[13]  S. Gambarelli,et al.  Multimetallic cooperativity in uranium-mediated CO₂ activation. , 2014, Journal of the American Chemical Society.

[14]  V. Iluc,et al.  Three-coordinate nickel carbene complexes and their one-electron oxidation products. , 2014, Journal of the American Chemical Society.

[15]  H. Grützmacher,et al.  η2-Coordination of a Phosphaalkyne to an Amino Olefin Nickel Complex and Regioselective Catalyzed Cyclooligomerization to Dewar 1,3,5-Triphosphabenzene , 2014 .

[16]  H. Grützmacher,et al.  Is the phosphaethynolate anion, (OCP)(-), an ambident nucleophile? A spectroscopic and computational study. , 2014, Dalton transactions.

[17]  H. Grützmacher,et al.  Sodium phosphaethynolate, Na(OCP), as a “P” transfer reagent for the synthesis of N-heterocyclic carbene supported P3 and PAsP radicals , 2014 .

[18]  G. Santiso‐Quiñones,et al.  Sodium phosphaethynolate as a building block for heterocycles. , 2014, Angewandte Chemie.

[19]  H. Grützmacher,et al.  Coulomb repulsion versus cycloaddition: formation of anionic four-membered rings from sodium phosphaethynolate, Na(OCP). , 2014, Dalton transactions.

[20]  V. Mougel,et al.  Cation-mediated conversion of the state of charge in uranium arene inverted-sandwich complexes. , 2013, Chemistry.

[21]  J. Goicoechea,et al.  Phosphinecarboxamide: a phosphorus-containing analogue of urea and stable primary phosphine. , 2013, Journal of the American Chemical Society.

[22]  L. Maron,et al.  Controlled thermolysis of uranium (alkoxy)siloxy complexes: a route to polymetallic complexes of low-valent uranium. , 2013, Angewandte Chemie.

[23]  J. Goicoechea,et al.  The 2-phosphaethynolate anion: a convenient synthesis and [2+2] cycloaddition chemistry. , 2013, Angewandte Chemie.

[24]  J. Pécaut,et al.  Tuning uranium-nitrogen multiple bond formation with ancillary siloxide ligands. , 2013, Journal of the American Chemical Society.

[25]  J. Pécaut,et al.  Synthesis of electron-rich uranium(IV) complexes supported by tridentate Schiff base ligands and their multi-electron redox chemistry. , 2013, Inorganic chemistry.

[26]  Christophe Copéret,et al.  Siloxides as supporting ligands in uranium(III)-mediated small-molecule activation. , 2012, Angewandte Chemie.

[27]  C. A. Russell,et al.  Coordination chemistry of trimethylsilylphosphaalkyne: a phosphaalkyne bearing a reactive substituent. , 2012, Dalton transactions.

[28]  M. Caporali,et al.  Synthesis and characterization of terminal [Re(XCO)(CO)2(triphos)] (X=N, P): isocyanate versus phosphaethynolate complexes. , 2012, Chemistry.

[29]  A. J. Blake,et al.  Synthesis and Structure of a Terminal Uranium Nitride Complex , 2012, Science.

[30]  F. Heinemann,et al.  Formation of a uranium trithiocarbonate complex via the nucleophilic addition of a sulfide-bridged uranium complex to CS2. , 2012, Inorganic chemistry.

[31]  H. Grützmacher,et al.  Phosphination of carbon monoxide: a simple synthesis of sodium phosphaethynolate (NaOCP). , 2011, Angewandte Chemie.

[32]  F. Heinemann,et al.  C-C bond formation through reductive coupling of CS2 to yield uranium tetrathiooxalate and ethylenetetrathiolate complexes. , 2011, Angewandte Chemie.

[33]  P. Arnold,et al.  Small molecule activation by uranium tris(aryloxides): experimental and computational studies of binding of N2, coupling of CO, and deoxygenation insertion of CO2 under ambient conditions. , 2011, Journal of the American Chemical Society.

[34]  John S. Anderson,et al.  Reactions of CO(2) and CS(2) with 1,2-bis(di-tert-butylphosphino)ethane complexes of nickel(0) and nickel(I). , 2010, Inorganic chemistry.

[35]  B. Scott,et al.  Uranium azide photolysis results in C-H bond activation and provides evidence for a terminal uranium nitride. , 2010, Nature chemistry.

[36]  P. Hitchcock,et al.  U(III)-induced reductive co-coupling of NO and CO to form U(IV) cyanate and oxo derivates. , 2010, Chemistry.

[37]  B. Scott,et al.  Synthesis, structure, spectroscopy and redox energetics of a series of uranium(IV) mixed-ligand metallocene complexes , 2010 .

[38]  Guang Wu,et al.  Synthesis of a nitrido-substituted analogue of the uranyl ion, [N=U=O]+. , 2010, Journal of the American Chemical Society.

[39]  P. Arnold,et al.  Uranium-nitrogen multiple bonding: isostructural anionic, neutral, and cationic uranium nitride complexes featuring a linear U=N=U core. , 2010, Journal of the American Chemical Society.

[40]  C. Anthon,et al.  Carbon dioxide activation with sterically pressured mid- and high-valent uranium complexes. , 2008, Journal of the American Chemical Society.

[41]  J. Pécaut,et al.  A nitrido-centered uranium azido cluster obtained from a uranium azide. , 2008, Angewandte Chemie.

[42]  T. Schaub,et al.  A Mononuclear η2‐Bonded Phosphaalkyne Nickel(0) Complex , 2006 .

[43]  Hidetaka Nakai,et al.  Multiple-bond metathesis mediated by sterically pressured uranium complexes. , 2006, Angewandte Chemie.

[44]  J. Ziller,et al.  Molecular Octa-Uranium Rings with Alternating Nitride and Azide Bridges , 2005, Science.

[45]  K. Meyer,et al.  Carbon dioxide reduction and carbon monoxide activation employing a reactive uranium(III) complex. , 2005, Journal of the American Chemical Society.

[46]  B. Scott,et al.  A new mode of reactivity for pyridine N-oxide: C-H activation with uranium(IV) and thorium(IV) bis(alkyl) complexes. , 2005, Journal of the American Chemical Society.

[47]  M. Ephritikhine,et al.  A Comparison of Analogous 4f- and 5f-Element Compounds: Syntheses, X-ray Crystal Structures and Catalytic Activity of the Homoleptic Amidinate Complexes [M{MeC(NCy)2}3] (M = La, Nd or U) , 2004 .

[48]  L. Zakharov,et al.  A Linear, O-Coordinated η1-CO2 Bound to Uranium , 2004, Science.

[49]  D. Mindiola,et al.  Isocyanate and carbodiimide synthesis by nitrene-group-transfer from a nickel(II) imido complex. , 2002, Chemical communications.

[50]  S. Schneiderbauer,et al.  Synthesis of alkaline earth metal bis(2-phosphaethynolates) , 2002 .

[51]  Jason M. Lynam,et al.  Mononuclear η2 (4e)-Bonded Phosphaalkyne Complexes; Selective Formation of a 1,2-Diphosphacyclobutadiene Tantalum Complex. , 2001, Angewandte Chemie.

[52]  J. Perdew,et al.  Erratum: Pair-distribution function and its coupling-constant average for the spin-polarized electron gas [Phys. Rev. B 46, 12 947 (1992)] , 1997 .

[53]  B. Scott,et al.  Sterically demanding aryloxides as supporting ligands in organoactinide chemistry. Synthesis, structural characterization, and reactivity of Th(O-2,6-t-Bu{sub 2}C{sub 6}H{sub 3}){sub 2}(CH{sub 2}SiMe{sub 3}){sub 2} and formation of the trimeric thorium hydride Th{sub 3}H{sub 6}(O-2,6-t-Bu{sub 2}C{su , 1996 .

[54]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[55]  R. Goddard,et al.  η2‐tert‐Butylphosphaacetylen‐Komplexe des Titanocens und Zirkonocens , 1990 .

[56]  M. Noltemeyer,et al.  Organoactinoid-Komplexe: Substituierte benzamidinat-anionen als sterische äquivalente zu η5-C5H5 und η5-C5Me5. Molekülstrukturen von [PhC(NSiMe3)2]3UCl, [4-CF3C6H4C(NSiMe3)2]3UCl, [2,4,6-(CF3)3C6H2C(NSiMe3)2]2UCl2 und [2,4,6-(CF3)3C6H2C(NSiMe3)2]2ThCl2 , 1990 .

[57]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[58]  R. Andersen,et al.  Chemistry of Trivalent Uranium Metallocenes: Electron-Transfer Reactions with Carbon Disulfide. Formation of [(RC5H4)3U]2[μ= η1, η2-CS2] , 1986 .

[59]  K. W. Bagnall,et al.  N,N-diisopropylcarboxylic acid amide complexes of thorium(IV) and uranium(IV) N-thiocyanates; the crystal structure of tetraisothiocyanato tetrakis(N,N-diisopropylacetamide-O)uranium(IV) , 1984 .

[60]  J. Kopf,et al.  Halogeno-und Pseudohalogeno-tris(pentahaptocyclopentadienyl)uran(IV)- Komplexe als Lewis-Säuren: Darstellung und Struktur trigonal-bipyramidaler Uran-Organyle des Typs [(η5 -C5H5)3UXL] / Tris(pentahaptocyclopentadienyl)uranium(IV) Halides and Pseudohalides as Lewis-Acids: Preparation and Structure o , 1978 .

[61]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[62]  I. Ciofini,et al.  Two-electron versus one-electron reduction of chalcogens by uranium(III): synthesis of a terminal U(V) persulfide complex , 2014 .

[63]  P. Hitchcock,et al.  Reductive disproportionation of carbon dioxide to carbonate and squarate products using a mixed-sandwich U(III) complex. , 2009, Chemical communications.

[64]  K. W. Bagnall,et al.  The crystal and molecular structures of the N,N’-diisopropylbutyramide (DIPIBA) and N,N-dicyclohexylacetamide (DCA) complexes [Th(NCS)4(DIPIBA)3] and [Th(NCS)2Cl2(DCA)3] , 1992 .

[65]  J. F. Nixon,et al.  Novel transition metal phospha-alkyne complexes. X-Ray crystal and molecular structure of a side-bonded ButCP complex of zerovalent platinum, Pt(PPh3)2(ButCP) , 1981 .

[66]  M. Aresta,et al.  New nickel–carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine)nickel , 1975 .