Uranium and thorium complexes of the phosphaethynolate ion
暂无分享,去创建一个
Nicholas S. Settineri | L. Maron | J. Goicoechea | J. Arnold | C. Camp | J. Lefèvre | A. Jupp | N. Settineri
[1] S. Aldridge,et al. E–H Bond Activation of Ammonia and Water by a Geometrically Constrained Phosphorus(III) Compound , 2015, Angewandte Chemie.
[2] J. Goicoechea,et al. Cyclo-oligomerization of isocyanates with Na(PH2) or Na(OCP) as “P–” anion sources , 2015, Chemical science.
[3] H. Schaefer,et al. Carbonyl migration from phosphorus to the metal in binuclear phosphaketenyl metal carbonyl complexes to give bridging diphosphido complexes , 2015 .
[4] J. Pécaut,et al. CS2 activation at uranium(III) siloxide ate complexes: the effect of a Lewis acidic site. , 2015, Dalton transactions.
[5] Michael J. Cowley,et al. Phosphide Delivery to a Cyclotrisilene , 2014, Angewandte Chemie.
[6] H. Grützmacher,et al. Phosphaketenes as building blocks for the synthesis of triphospha heterocycles. , 2014, Chemistry.
[7] L. Maron,et al. Controlling selectivity in the reductive activation of CO2 by mixed sandwich uranium(III) complexes , 2014 .
[8] A. J. Blake,et al. Two-Electron Reductive Carbonylation of Terminal Uranium(V) and Uranium(VI) Nitrides to Cyanate by Carbon Monoxide** , 2014, Angewandte Chemie.
[9] A. J. Blake,et al. The Ketimide Ligand is Not Just an Inert Spectator: Heteroallene Insertion Reactivity of an Actinide–Ketimide Linkage in a Thorium Carbene Amide Ketimide Complex** , 2014, Angewandte Chemie.
[10] N. Fridman,et al. Dimethylsilyl bis(amidinate)actinide complexes: synthesis and reactivity towards oxygen containing substrates. , 2014, Dalton transactions.
[11] S. Roe,et al. Formation of cyanates in low-valent uranium chemistry: a synergistic experimental/theoretical study. , 2014, Dalton transactions.
[12] H. Grützmacher,et al. Redox-triggered reversible interconversion of a monocyclic and a bicyclic phosphorus heterocycle. , 2014, Angewandte Chemie.
[13] S. Gambarelli,et al. Multimetallic cooperativity in uranium-mediated CO₂ activation. , 2014, Journal of the American Chemical Society.
[14] V. Iluc,et al. Three-coordinate nickel carbene complexes and their one-electron oxidation products. , 2014, Journal of the American Chemical Society.
[15] H. Grützmacher,et al. η2-Coordination of a Phosphaalkyne to an Amino Olefin Nickel Complex and Regioselective Catalyzed Cyclooligomerization to Dewar 1,3,5-Triphosphabenzene , 2014 .
[16] H. Grützmacher,et al. Is the phosphaethynolate anion, (OCP)(-), an ambident nucleophile? A spectroscopic and computational study. , 2014, Dalton transactions.
[17] H. Grützmacher,et al. Sodium phosphaethynolate, Na(OCP), as a “P” transfer reagent for the synthesis of N-heterocyclic carbene supported P3 and PAsP radicals , 2014 .
[18] G. Santiso‐Quiñones,et al. Sodium phosphaethynolate as a building block for heterocycles. , 2014, Angewandte Chemie.
[19] H. Grützmacher,et al. Coulomb repulsion versus cycloaddition: formation of anionic four-membered rings from sodium phosphaethynolate, Na(OCP). , 2014, Dalton transactions.
[20] V. Mougel,et al. Cation-mediated conversion of the state of charge in uranium arene inverted-sandwich complexes. , 2013, Chemistry.
[21] J. Goicoechea,et al. Phosphinecarboxamide: a phosphorus-containing analogue of urea and stable primary phosphine. , 2013, Journal of the American Chemical Society.
[22] L. Maron,et al. Controlled thermolysis of uranium (alkoxy)siloxy complexes: a route to polymetallic complexes of low-valent uranium. , 2013, Angewandte Chemie.
[23] J. Goicoechea,et al. The 2-phosphaethynolate anion: a convenient synthesis and [2+2] cycloaddition chemistry. , 2013, Angewandte Chemie.
[24] J. Pécaut,et al. Tuning uranium-nitrogen multiple bond formation with ancillary siloxide ligands. , 2013, Journal of the American Chemical Society.
[25] J. Pécaut,et al. Synthesis of electron-rich uranium(IV) complexes supported by tridentate Schiff base ligands and their multi-electron redox chemistry. , 2013, Inorganic chemistry.
[26] Christophe Copéret,et al. Siloxides as supporting ligands in uranium(III)-mediated small-molecule activation. , 2012, Angewandte Chemie.
[27] C. A. Russell,et al. Coordination chemistry of trimethylsilylphosphaalkyne: a phosphaalkyne bearing a reactive substituent. , 2012, Dalton transactions.
[28] M. Caporali,et al. Synthesis and characterization of terminal [Re(XCO)(CO)2(triphos)] (X=N, P): isocyanate versus phosphaethynolate complexes. , 2012, Chemistry.
[29] A. J. Blake,et al. Synthesis and Structure of a Terminal Uranium Nitride Complex , 2012, Science.
[30] F. Heinemann,et al. Formation of a uranium trithiocarbonate complex via the nucleophilic addition of a sulfide-bridged uranium complex to CS2. , 2012, Inorganic chemistry.
[31] H. Grützmacher,et al. Phosphination of carbon monoxide: a simple synthesis of sodium phosphaethynolate (NaOCP). , 2011, Angewandte Chemie.
[32] F. Heinemann,et al. C-C bond formation through reductive coupling of CS2 to yield uranium tetrathiooxalate and ethylenetetrathiolate complexes. , 2011, Angewandte Chemie.
[33] P. Arnold,et al. Small molecule activation by uranium tris(aryloxides): experimental and computational studies of binding of N2, coupling of CO, and deoxygenation insertion of CO2 under ambient conditions. , 2011, Journal of the American Chemical Society.
[34] John S. Anderson,et al. Reactions of CO(2) and CS(2) with 1,2-bis(di-tert-butylphosphino)ethane complexes of nickel(0) and nickel(I). , 2010, Inorganic chemistry.
[35] B. Scott,et al. Uranium azide photolysis results in C-H bond activation and provides evidence for a terminal uranium nitride. , 2010, Nature chemistry.
[36] P. Hitchcock,et al. U(III)-induced reductive co-coupling of NO and CO to form U(IV) cyanate and oxo derivates. , 2010, Chemistry.
[37] B. Scott,et al. Synthesis, structure, spectroscopy and redox energetics of a series of uranium(IV) mixed-ligand metallocene complexes , 2010 .
[38] Guang Wu,et al. Synthesis of a nitrido-substituted analogue of the uranyl ion, [N=U=O]+. , 2010, Journal of the American Chemical Society.
[39] P. Arnold,et al. Uranium-nitrogen multiple bonding: isostructural anionic, neutral, and cationic uranium nitride complexes featuring a linear U=N=U core. , 2010, Journal of the American Chemical Society.
[40] C. Anthon,et al. Carbon dioxide activation with sterically pressured mid- and high-valent uranium complexes. , 2008, Journal of the American Chemical Society.
[41] J. Pécaut,et al. A nitrido-centered uranium azido cluster obtained from a uranium azide. , 2008, Angewandte Chemie.
[42] T. Schaub,et al. A Mononuclear η2‐Bonded Phosphaalkyne Nickel(0) Complex , 2006 .
[43] Hidetaka Nakai,et al. Multiple-bond metathesis mediated by sterically pressured uranium complexes. , 2006, Angewandte Chemie.
[44] J. Ziller,et al. Molecular Octa-Uranium Rings with Alternating Nitride and Azide Bridges , 2005, Science.
[45] K. Meyer,et al. Carbon dioxide reduction and carbon monoxide activation employing a reactive uranium(III) complex. , 2005, Journal of the American Chemical Society.
[46] B. Scott,et al. A new mode of reactivity for pyridine N-oxide: C-H activation with uranium(IV) and thorium(IV) bis(alkyl) complexes. , 2005, Journal of the American Chemical Society.
[47] M. Ephritikhine,et al. A Comparison of Analogous 4f- and 5f-Element Compounds: Syntheses, X-ray Crystal Structures and Catalytic Activity of the Homoleptic Amidinate Complexes [M{MeC(NCy)2}3] (M = La, Nd or U) , 2004 .
[48] L. Zakharov,et al. A Linear, O-Coordinated η1-CO2 Bound to Uranium , 2004, Science.
[49] D. Mindiola,et al. Isocyanate and carbodiimide synthesis by nitrene-group-transfer from a nickel(II) imido complex. , 2002, Chemical communications.
[50] S. Schneiderbauer,et al. Synthesis of alkaline earth metal bis(2-phosphaethynolates) , 2002 .
[51] Jason M. Lynam,et al. Mononuclear η2 (4e)-Bonded Phosphaalkyne Complexes; Selective Formation of a 1,2-Diphosphacyclobutadiene Tantalum Complex. , 2001, Angewandte Chemie.
[52] J. Perdew,et al. Erratum: Pair-distribution function and its coupling-constant average for the spin-polarized electron gas [Phys. Rev. B 46, 12 947 (1992)] , 1997 .
[53] B. Scott,et al. Sterically demanding aryloxides as supporting ligands in organoactinide chemistry. Synthesis, structural characterization, and reactivity of Th(O-2,6-t-Bu{sub 2}C{sub 6}H{sub 3}){sub 2}(CH{sub 2}SiMe{sub 3}){sub 2} and formation of the trimeric thorium hydride Th{sub 3}H{sub 6}(O-2,6-t-Bu{sub 2}C{su , 1996 .
[54] A. Becke. Density-functional thermochemistry. III. The role of exact exchange , 1993 .
[55] R. Goddard,et al. η2‐tert‐Butylphosphaacetylen‐Komplexe des Titanocens und Zirkonocens , 1990 .
[56] M. Noltemeyer,et al. Organoactinoid-Komplexe: Substituierte benzamidinat-anionen als sterische äquivalente zu η5-C5H5 und η5-C5Me5. Molekülstrukturen von [PhC(NSiMe3)2]3UCl, [4-CF3C6H4C(NSiMe3)2]3UCl, [2,4,6-(CF3)3C6H2C(NSiMe3)2]2UCl2 und [2,4,6-(CF3)3C6H2C(NSiMe3)2]2ThCl2 , 1990 .
[57] L. Curtiss,et al. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .
[58] R. Andersen,et al. Chemistry of Trivalent Uranium Metallocenes: Electron-Transfer Reactions with Carbon Disulfide. Formation of [(RC5H4)3U]2[μ= η1, η2-CS2] , 1986 .
[59] K. W. Bagnall,et al. N,N-diisopropylcarboxylic acid amide complexes of thorium(IV) and uranium(IV) N-thiocyanates; the crystal structure of tetraisothiocyanato tetrakis(N,N-diisopropylacetamide-O)uranium(IV) , 1984 .
[60] J. Kopf,et al. Halogeno-und Pseudohalogeno-tris(pentahaptocyclopentadienyl)uran(IV)- Komplexe als Lewis-Säuren: Darstellung und Struktur trigonal-bipyramidaler Uran-Organyle des Typs [(η5 -C5H5)3UXL] / Tris(pentahaptocyclopentadienyl)uranium(IV) Halides and Pseudohalides as Lewis-Acids: Preparation and Structure o , 1978 .
[61] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .
[62] I. Ciofini,et al. Two-electron versus one-electron reduction of chalcogens by uranium(III): synthesis of a terminal U(V) persulfide complex , 2014 .
[63] P. Hitchcock,et al. Reductive disproportionation of carbon dioxide to carbonate and squarate products using a mixed-sandwich U(III) complex. , 2009, Chemical communications.
[64] K. W. Bagnall,et al. The crystal and molecular structures of the N,N’-diisopropylbutyramide (DIPIBA) and N,N-dicyclohexylacetamide (DCA) complexes [Th(NCS)4(DIPIBA)3] and [Th(NCS)2Cl2(DCA)3] , 1992 .
[65] J. F. Nixon,et al. Novel transition metal phospha-alkyne complexes. X-Ray crystal and molecular structure of a side-bonded ButCP complex of zerovalent platinum, Pt(PPh3)2(ButCP) , 1981 .
[66] M. Aresta,et al. New nickel–carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine)nickel , 1975 .