Experimental investigation and thermodynamic assessment of phase equilibria in the Nb–Si–Zr ternary system

[1]  Xiaodong He,et al.  In-situ precipitated network structure and high-temperature compressive behavior of Nb–Ti–C–B composites , 2014 .

[2]  Xingjun Liu,et al.  Experimental investigation of phase equilibria in the Fe-Nb-Si ternary system , 2014 .

[3]  Zhenjun Wang,et al.  Microstructures and room temperature fracture toughness of Nb/Nb5Si3 composites alloyed with W, Mo and W–Mo fabricated by spark plasma sintering , 2014 .

[4]  Jieyu Zhang,et al.  Experimental investigation and thermodynamic calculation of the Al–Si–Ti system in Al-rich corner , 2014 .

[5]  F. Stein,et al.  The liquidus surface of the Cr–Al–Nb system and re-investigation of the Cr–Nb and Al–Cr phase diagrams , 2014 .

[6]  Zhenjun Wang,et al.  Microstructures of Nb/Nb5Si3 composites and it alloyed with W, Mo and W–Mo fabricated by spark plasma sintering , 2014 .

[7]  Shusuo Li,et al.  Effect of Zr and Mg on microstructure and fracture toughness of Nb-Si based alloys , 2011 .

[8]  Y. Kimura,et al.  Effect of microstructure on the high-temperature deformation behavior of Nb-Si alloys , 2009 .

[9]  Song Wang,et al.  Thermodynamic assessment of the C–Si–Zr system , 2009 .

[10]  Lanzhang Zhou,et al.  Microstructures and mechanical properties of cast Nb-Ti-Si-Zr alloys , 2008 .

[11]  G. Shao,et al.  A study of the effects of Hf and Sn additions on the microstructure of Nbss/Nb5Si3 based in situ composites , 2007 .

[12]  Y. Kimura,et al.  Fracture toughness and high temperature strength of unidirectionally solidified Nb–Si binary and Nb–Ti–Si ternary alloys , 2006 .

[13]  T. Belmonte,et al.  Thermodynamic description of the Cr–Nb–Si isothermal section at 1473 K , 2006 .

[14]  You-wei Yan,et al.  Influence of sintering temperature on microstructures of Nb/Nb5Si3 in situ composites synthesized by spark plasma sintering , 2006 .

[15]  Y. Mishima,et al.  Effects of Zr on the eutectoid decomposition behavior of Nb3Si into (Nb)/Nb5Si3 , 2005 .

[16]  P. Tsakiropoulos,et al.  Study of the role of Al and Cr additions in the microstructure of Nb–Ti–Si in situ composites , 2005 .

[17]  Won-Yong Kim,et al.  Effect of V addition on microstructure and mechanical property in the Nb–Si alloy system , 2004 .

[18]  B. Bewlay,et al.  A review of very-high-temperature Nb-silicide-based composites , 2003 .

[19]  K. P. Gupta The Nb-Ni-Zr system (Niobium-Nickel-Zirconium) , 2000 .

[20]  B. Bewlay,et al.  Solidification processing of high temperature intermetallic eutectic-based alloys , 1995 .

[21]  A. Heuer,et al.  High temperature plastic anisotropy in MoSi2 single crystals , 1995 .

[22]  R. Abbaschian,et al.  The Nb-Si (Niobium-Silicon) system , 1993 .

[23]  R. H. Titran Niobium and its alloys , 1992 .

[24]  D. Dimiduk,et al.  Phase relations and transformation kinetics in the high Nb region of the Nb-Si system , 1991 .

[25]  A. F. Guillermet Thermodynamic analysis of the stable phases in the Zr - Nb system and calculation of the phase diagram , 1991 .

[26]  D. Dimiduk,et al.  Microstructures and Mechanical Behavior of Two-Phase Niobium Silicide-Niobium Alloys , 1988 .

[27]  K. P. Gupta,et al.  Si-Stabilised C14 laves phases in the transition metal systems , 1978 .

[28]  R. Skolozdra,et al.  The mutual solubility of disilicides of the transition metals from groups IV, V, and VI , 1964 .