Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review)

Synthesis of solar fuels including methanol from carbon dioxide (CO2) and water using solar energy or electricity derived from sunlight, which is popularly known as artificial photosynthesis (AP), has been considered to be one of the top-most research priorities all over the world, as on today, as this process can indeed deal with (i) the CO2 related global warming problem, (ii) synthesis of renewable energy resources, and (iii) storing of energy in the form of liquid fuels with considerably high energy density. By using electricity derived from sunlight, the CO2 can be reduced into methanol and other value added chemicals using water as a source of protons and electrons in a device called, artificial leaf. The development of an efficient AP or artificial leaves is possible by the careful analysis and understanding of the complete information available on (i) CO2 reduction process, (ii) water oxidation or splitting reaction, and (iii) the electricity generation from sunlight. The current state-of-the-art on CO2 reduction has been thoroughly reviewed in a recent article “Conversion of carbon dioxide into methanol—a potential liquid fuel: fundamental challenges and opportunities”, (Renewable and Sustainable Energy Reviews, 31, 2014, 221–257), whereas, the same on (i) water oxidation (or splitting) process, and (ii) the electricity generation from sunlight is yet to be reviewed together from the perspective of creating an efficient and economically viable artificial leaves. This article is an attempt to this effect while citing all the up to date relevant references.

[1]  Stuart Licht,et al.  Multiple Band Gap Semiconductor/Electrolyte Solar Energy Conversion , 2001 .

[2]  Paul Kögerler,et al.  An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. , 2008, Angewandte Chemie.

[3]  S. Bachu,et al.  Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution , 2003 .

[4]  Ibram Ganesh,et al.  Influence of Li-doping on structural characteristics and photocatalytic activity of ZnO nano-powder formed in a novel solution pyro-hydrolysis route , 2012 .

[5]  G. Sundararajan,et al.  Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications , 2014 .

[6]  Andrew B. Bocarsly,et al.  Photons to formate: Efficient electrochemical solar energy conversion via reduction of carbon dioxide , 2014 .

[7]  Nathan S. Lewis,et al.  Proton exchange membrane electrolysis sustained by water vapor , 2011 .

[8]  James Barber,et al.  Photosystem II: the engine of life , 2003, Quarterly Reviews of Biophysics.

[9]  Antonio Currao,et al.  Photoelectrochemical Water Splitting , 2007 .

[10]  Mircea Dincă,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:From the Cover: Nickel-borate oxygen-evolving catalyst that functions under benign conditions , 2010 .

[11]  Stefan Bachu,et al.  Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change , 2000 .

[12]  Helmut Tributsch,et al.  Photovoltaic hydrogen generation , 2008 .

[13]  Igor Levin,et al.  H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. , 2013, Nature materials.

[14]  Nathan S. Lewis,et al.  Basic Research Needs for Solar Energy Utilization: report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005 , 2005 .

[15]  D. Nocera,et al.  Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters , 2011 .

[16]  Emily Barton Cole,et al.  Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. , 2010, Journal of the American Chemical Society.

[17]  G. Karagiannakis,et al.  Thermochemical CO2 and CO2/H2O Splitting over NiFe2O4 for Solar Fuels Synthesis , 2014 .

[18]  M. Okano,et al.  Selective Conversion of Carbon Dioxide to Dimethyl Carbonate by Molecular Catalysis. , 1998, The Journal of organic chemistry.

[19]  D. Klug,et al.  The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. , 2011, Journal of the American Chemical Society.

[20]  Michael Stöcker,et al.  Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. , 2008, Angewandte Chemie.

[21]  Tianquan Lian,et al.  Polyoxometalate water oxidation catalysts and the production of green fuel. , 2012, Chemical Society reviews.

[22]  D. Corrigan,et al.  Electrochemical and Spectroscopic Evidence on the Participation of Quadrivalent Nickel in the Nickel Hydroxide Redox Reaction , 1989 .

[23]  Wojciech M. Budzianowski,et al.  Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs , 2012 .

[24]  Siglinda Perathoner,et al.  The Role of Nanostructure in Improving the Performance of Electrodes for Energy Storage and Conversion , 2009 .

[25]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[26]  K. Kalyanasundaram Photoelectrochemical cell studies with semiconductor electrodes: a classified bibliography (1975-1983) , 1985 .

[27]  Suhuai Wei,et al.  Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO 2 , 2010 .

[28]  Adrian Ilinca,et al.  Energy storage systems—Characteristics and comparisons , 2008 .

[29]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[30]  Franz Karg,et al.  High Efficiency CIGS Solar Modules , 2012 .

[31]  M. Costas,et al.  Efficient water oxidation catalysts based on readily available iron coordination complexes. , 2011, Nature chemistry.

[32]  M. Aresta,et al.  Utilisation of CO2 as a chemical feedstock: opportunities and challenges. , 2007, Dalton transactions.

[33]  H. Möller Semiconductors for solar cell applications , 1991 .

[34]  Xiao Feng,et al.  The critical conversion efficiency of light energy to hydrogen from photocatalytic water decomposition , 2008 .

[35]  Robert Kerr,et al.  Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications , 2008, Nanotechnology.

[36]  J. Louie,et al.  Efficient Nickel-Catalyzed [2 + 2 + 2] Cycloaddition of CO2 and Diynes , 2002 .

[37]  Christian Sattler,et al.  Solar water splitting for hydrogen production with monolithic reactors , 2005 .

[38]  S. Woodward,et al.  Remarkably stable (Me3Al)2DABCO and stereoselective nickel-catalyzed AlR3 (R=Me, Et) additions to aldehydes. , 2005, Angewandte Chemie.

[39]  Gonghu Li,et al.  Innovative Photocatalysts for Solar Fuel Generation by CO 2 Reduction , 2013 .

[40]  J. Jang,et al.  Engineered Nanorod Perovskite Film Photocatalysts to Harvest Visible Light , 2011, Advanced materials.

[41]  L. Hong,et al.  Research progress in synthesis and catalysis of polyoxometalates , 2005 .

[42]  M. Dresselhaus,et al.  Recent developments in thermoelectric materials , 2003 .

[43]  G. Olah,et al.  Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. , 2009, The Journal of organic chemistry.

[44]  P. D. Jongh,et al.  Photoelectrochemistry of Electrodeposited Cu2 O , 2000 .

[45]  Ibram Ganesh,et al.  Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review) , 2014 .

[46]  Tonio Buonassisi,et al.  High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation. , 2012, Angewandte Chemie.

[47]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[48]  D. Nocera Chemistry of personalized solar energy. , 2009, Inorganic chemistry.

[49]  Xiaoze Du,et al.  Numerical investigation on photocatalytic CO2 reduction by solar energy in double-skin sheet reactor , 2014 .

[50]  T. Hou,et al.  Fabrication and Characterization of High‐k Dielectric Nickel Titanate Thin Films Using a Modified Sol–Gel Method , 2011 .

[51]  Vittal K. Yachandra,et al.  Structure-activity correlations in a nickel-borate oxygen evolution catalyst. , 2012, Journal of the American Chemical Society.

[52]  Daniel G Nocera,et al.  Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves , 2012, Proceedings of the National Academy of Sciences.

[53]  Paul M Zimmerman,et al.  The role of free N-heterocyclic carbene (NHC) in the catalytic dehydrogenation of ammonia-borane in the nickel NHC system. , 2009, Angewandte Chemie.

[54]  John O’M. Bockris,et al.  A one-unit photovoltaic electrolysis system based on a triple stack of amorphous silicon (pin) cells , 1985 .

[55]  Ibram Ganesh,et al.  Conversion of Carbon Dioxide to Methanol Using Solar Energy - A Brief Review , 2011 .

[56]  J. Fierro,et al.  Water splitting on semiconductor catalysts under visible-light irradiation. , 2009, ChemSusChem.

[57]  Aie World Energy Outlook 2004 , 2004 .

[58]  G. Olah Beyond oil and gas: the methanol economy. , 2006, Angewandte Chemie.

[59]  M. Ouyang,et al.  Visible-light Energy Storage by Ti3+ in TiO2/Cu2O Bilayer Film , 2009 .

[60]  John L DiMeglio,et al.  Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. , 2013, Journal of the American Chemical Society.

[61]  R. C. Kainthla,et al.  One step method to produce hydrogen by a triple stack amorphous silicon solar cell , 1989 .

[62]  Kamaruzzaman Sopian,et al.  Estimating the CO2 abatement cost: Substitute Price of Avoiding CO2 Emission (SPAE) by Renewable Energy׳s Feed in Tariff in selected countries , 2014 .

[63]  V. Batista,et al.  The mechanism of photosynthetic water splitting , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[64]  Liang Zhao,et al.  Photocatalytic hydrogen production under direct solar light in a CPC based solar reactor: Reactor design and preliminary results , 2009 .

[65]  Christopher W. Jones,et al.  Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. , 2008, Journal of the American Chemical Society.

[66]  Ranko Goic,et al.  review of solar photovoltaic technologies , 2011 .

[67]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[68]  J. G. Fleming,et al.  All-metallic three-dimensional photonic crystals with a large infrared bandgap , 2002, Nature.

[69]  Nelson A. Kelly,et al.  Solar energy concentrating reactors for hydrogen production by photoelectrochemical water splitting , 2008 .

[70]  Torsten Fransson,et al.  The Design of a Solar-driven Catalytic Reactor for CO2 Conversions☆ , 2014 .

[71]  Turner,et al.  A realizable renewable energy future , 1999, Science.

[72]  John A. Turner,et al.  High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production , 2001 .

[73]  Roberto Zilles,et al.  Comments on experience curves for PV modules , 2002 .

[74]  Ibram Ganesh,et al.  Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications , 2012 .

[75]  Tsuyoshi Takata,et al.  Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light , 2008 .

[76]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[77]  Serena Berardi,et al.  Is [Co4(H2O)2(α-PW9O34)2](10-) a genuine molecular catalyst in photochemical water oxidation? Answers from time-resolved hole scavenging experiments. , 2012, Chemical communications.

[78]  James Barber,et al.  Biological solar energy , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[79]  Tom Regier,et al.  An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. , 2013, Journal of the American Chemical Society.

[80]  Kyoung-Shin Choi,et al.  Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production , 2009, Proceedings of the National Academy of Sciences.

[81]  Ibram Ganesh,et al.  Conversion of Carbon Dioxide into Several Potential Chemical Commodities Following Different Pathways - A Review , 2013 .

[82]  M. Aresta Carbon dioxide as chemical feedstock , 2010 .

[83]  Akira Fujishima,et al.  Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond , 2003 .

[84]  J. E. Lyons,et al.  Catalysis research of relevance to carbon management: progress, challenges, and opportunities. , 2001, Chemical reviews.

[85]  Arthur J. Nozik,et al.  p‐n photoelectrolysis cells , 1976 .

[86]  Liejin Guo,et al.  Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration , 2010 .

[87]  Eric L. Miller,et al.  High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes , 1998 .

[88]  Ibram Ganesh,et al.  Preparation and Characterization of Ni-Doped TiO2 Materials for Photocurrent and Photocatalytic Applications , 2012, TheScientificWorldJournal.

[89]  M. Mori,et al.  Highly enantioselective catalytic carbon dioxide incorporation reaction: nickel-catalyzed asymmetric carboxylative cyclization of bis-1,3-dienes. , 2004, Journal of the American Chemical Society.

[90]  Photoelectrochemical characterization of the p-Cu2O-non aqueous electrolyte junction , 1984 .

[91]  Stephen Dye,et al.  Rapid freshening of the deep North Atlantic Ocean over the past four decades , 2002, Nature.

[92]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[93]  Wan Mohd Ashri Wan Daud,et al.  Photocatalytic CO2 transformation into fuel: A review on advances in photocatalyst and photoreactor , 2014 .

[94]  Michael Grätzel,et al.  Perspectives for dye‐sensitized nanocrystalline solar cells , 2000 .

[95]  Hongjin Lv,et al.  Differentiating homogeneous and heterogeneous water oxidation catalysis: confirmation that [Co4(H2O)2(α-PW9O34)2]10- is a molecular water oxidation catalyst. , 2013, Journal of the American Chemical Society.

[96]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[97]  Teresa M. Mata,et al.  Microalgae for biodiesel production and other applications: A review , 2010 .

[98]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[99]  Hidenori Ochiai,et al.  Nickel-catalyzed carboxylation of organozinc reagents with CO2. , 2008, Organic letters.

[100]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[101]  P. D. Jongh,et al.  Cu2O: Electrodeposition and Characterization , 1999 .

[102]  Akira Fujishima,et al.  Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell , 2002 .

[103]  Hiroyuki Yasuda,et al.  Transformation of carbon dioxide. , 2007, Chemical reviews.

[104]  R. Shrivastav,et al.  Iron doped nanostructured TiO2 for photoelectrochemical generation of hydrogen , 2008 .

[105]  Adam Heller,et al.  Hydrogen-Evolving Solar Cells , 1984, Science.

[106]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[107]  S. Liao,et al.  Efficient electrochemical synthesis of 2-arylsuccinic acids from CO2 and aryl-substituted alkenes with nickel as the cathode , 2008 .

[108]  A. Kudo,et al.  Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation , 2012, Proceedings of the National Academy of Sciences.

[109]  V. Bulović,et al.  Direct formation of a water oxidation catalyst from thin-film cobalt , 2010 .

[110]  Patrick L. Holland,et al.  A stable molecular nickel catalyst for the homogeneous photogeneration of hydrogen in aqueous solution. , 2011, Chemical communications.

[111]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[112]  G V Subba Rao,et al.  Semiconductor based photoelectrochemical cells for solar energy conversion—An overview , 1982 .

[113]  E. Fujita,et al.  Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. , 2009, Accounts of chemical research.

[114]  D. Tryk,et al.  New approaches in CO2 reduction , 1998 .

[115]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[116]  C. M. Williams,et al.  Nickel-catalyzed reductive carboxylation of styrenes using CO2. , 2008, Journal of the American Chemical Society.

[117]  M. Mercedes Maroto-Valer,et al.  An overview of current status of carbon dioxide capture and storage technologies , 2014 .

[118]  Matthew W Kanan,et al.  Cobalt-phosphate oxygen-evolving compound. , 2009, Chemical Society reviews.

[119]  Thomas E. Mallouk,et al.  Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells , 2012 .

[120]  Nelson A. Kelly,et al.  Optimization of solar powered hydrogen production using photovoltaic electrolysis devices , 2008 .

[121]  M. Forster Investigations to convert CO2, NaCl and H2O into Na2CO3 and HCl by thermal solar energy with high solar efficiency , 2014 .

[122]  D. Nocera,et al.  Bidirectional and unidirectional PCET in a molecular model of a cobalt-based oxygen-evolving catalyst. , 2011, Journal of the American Chemical Society.

[123]  Y. Shao-horn,et al.  Reversible Reduction of Oxygen to Peroxide Facilitated by Molecular Recognition , 2012, Science.

[124]  M. Baum,et al.  Reactivity of the Nickel(0)−CO2−Imine System: New Pathway to Vicinal Diamines , 2010 .

[125]  Akira Fujishima,et al.  PHOTOELECTROCHEMICAL REDUCTION OF CO2 IN A HIGH-PRESSURE CO2 + METHANOL MEDIUM AT P-TYPE SEMICONDUCTOR ELECTRODES , 1998 .

[126]  A. Steinfeld Solar thermochemical production of hydrogen--a review , 2005 .

[127]  M. Grätzel,et al.  Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation , 2011 .

[128]  Somnath C. Roy,et al.  Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. , 2010, ACS nano.

[129]  Matthew W Kanan,et al.  CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. , 2012, Journal of the American Chemical Society.

[130]  K. Domen,et al.  Effect of post-calcination on photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting under visible light , 2008 .

[131]  Donald Fitzmaurice,et al.  Optical electrochemistry I: steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode , 1991 .

[132]  A. Nozik,et al.  Photoelectrolysis of water using semiconducting TiO2 crystals , 1975, Nature.

[133]  Siglinda Perathoner,et al.  Towards solar fuels from water and CO2. , 2010, ChemSusChem.

[134]  S. Kent Hoekman,et al.  CO2 recycling by reaction with renewably-generated hydrogen , 2010 .

[135]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[136]  G. Naterer,et al.  Integrated fossil fuel and solar thermal systems for hydrogen production and CO2 mitigation , 2014 .

[137]  E. Lindeberg,et al.  Underground storage of CO2 in aquifers and oil reservoirs , 1995 .

[138]  Janusz Nowotny,et al.  Materials for photoelectrochemical energy conversion , 2007 .

[139]  Jie Song,et al.  Visible-light-driven hydrogen evolution from water using a noble-metal-free polyoxometalate catalyst , 2013 .

[140]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[141]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[142]  Nelson A. Kelly,et al.  Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting , 2006 .

[143]  J. Bandara,et al.  Multi-electron storage of photoenergy using Cu2O–TiO2 thin film photocatalyst , 2008 .

[144]  V. Batista,et al.  A model of the oxygen-evolving center of photosystem II predicted by structural refinement based on EXAFS simulations. , 2008, Journal of the American Chemical Society.

[145]  C. Wang Antimony-Based III-V Thermophotovoltaic Materials and Devices , 2004 .

[146]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[147]  F. Jiao,et al.  Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. , 2009, Angewandte Chemie.

[148]  J. Barber,et al.  Structural model of the oxygen-evolving centre of photosystem II with mechanistic implications , 2004 .

[149]  Fabrication and Photoelectrochemical Characterization of Fe, Co, Ni and Cu-Doped TiO2 Thin Films , 2013 .

[150]  D. Gamelin,et al.  Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/alpha-Fe(2)O(3) composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. , 2010, Journal of the American Chemical Society.

[151]  Golam Rasul,et al.  Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide-Al(2)Cl(6)/Al system. , 2002, Journal of the American Chemical Society.

[152]  G. Meyer,et al.  Reduction of I2/I3− by Titanium Dioxide , 2009 .

[153]  A. Steinfeld,et al.  Solar syngas production from CO2 and H2O in a two-step thermochemical cycle via Zn/ZnO redox reactions: Thermodynamic cycle analysis , 2011 .

[154]  M. Green Third generation photovoltaics : advanced solar energy conversion , 2006 .

[155]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.

[156]  Michael J. Kenney Nickel Films for Water Oxidation High-Performance Silicon Photoanodes Passivated with Ultrathin , 2013 .

[157]  Daniel G Nocera,et al.  Hydrogen production by molecular photocatalysis. , 2007, Chemical reviews.

[158]  J. Marshall Solar energy: Springtime for the artificial leaf , 2014, Nature.

[159]  Matthew W Kanan,et al.  Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. , 2010, Journal of the American Chemical Society.

[160]  J. M. Bell,et al.  Photoelectrochemistry of Porous p-Cu2O Films , 2008 .

[161]  Tatsuya Kodama,et al.  Thermochemical cycles for high-temperature solar hydrogen production. , 2007 .

[162]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[163]  J. Barber Photosystem II: an enzyme of global significance. , 2006, Biochemical Society transactions.

[164]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[165]  J. Gale,et al.  USING COAL SEAMS FOR CO2 SEQUESTRATION , 2006 .

[166]  Vladimir Bulovic,et al.  Photo-assisted water oxidation with cobalt-based catalyst formed from thin-film cobalt metal on silicon photoanodes , 2011 .

[167]  E. Yang,et al.  Effective metal screening and Schottky-barrier formation in metal-GaAs structures , 1990, IEEE Electron Device Letters.

[168]  V. Batista,et al.  QM/MM computational studies of substrate water binding to the oxygen-evolving centre of photosystem II , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[169]  Somnath C. Roy,et al.  Solar Spectrum Photocatalytic Conversion of CO2 and Water Vapor Into Hydrocarbons Using TiO2 Nanoparticle Membranes , 2014 .

[170]  Stuart Licht,et al.  Efficient Solar Water Splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis , 2000 .

[171]  Jie Song,et al.  An exceptionally fast homogeneous carbon-free cobalt-based water oxidation catalyst. , 2014, Journal of the American Chemical Society.

[172]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[173]  Hongjian Yan,et al.  Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst , 2009 .

[174]  B. M. Reddy,et al.  Copper Promoted Cobalt and Nickel Catalysts Supported on Ceria−Alumina Mixed Oxide: Structural Characterization and CO Oxidation Activity , 2009 .

[175]  Kazunari Domen,et al.  Cu2O as a photocatalyst for overall water splitting under visible light irradiation , 1998 .

[176]  Consolación Gil,et al.  Optimization methods applied to renewable and sustainable energy: A review , 2011 .

[177]  Qiushi Yin,et al.  A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals , 2010, Science.

[178]  Matthew W. Kanan,et al.  Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. , 2010, Journal of the American Chemical Society.

[179]  M. Risch,et al.  Cobalt-oxo core of a water-oxidizing catalyst film. , 2009, Journal of the American Chemical Society.

[180]  Krishnan Rajeshwar,et al.  Hydrogen generation at irradiated oxide semiconductor–solution interfaces , 2007 .

[181]  M. Halmann,et al.  Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells , 1978, Nature.

[182]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[183]  J. Barber Crystal structure of the oxygen-evolving complex of photosystem II. , 2008, Inorganic chemistry.

[184]  Stephen R. Forrest,et al.  Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions , 2004 .

[185]  H. García,et al.  Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. , 2009, Journal of the American Chemical Society.

[186]  A. Steinfeld,et al.  Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review , 2014 .

[187]  Timothy R. Cook,et al.  Solar energy supply and storage for the legacy and nonlegacy worlds. , 2010, Chemical reviews.

[188]  Frank Behrendt,et al.  Evaluation of strategies for the subsequent use of CO2 , 2010 .

[189]  Siglinda Perathoner,et al.  CO2‐based energy vectors for the storage of solar energy , 2011 .

[190]  Jerzy Walendziewski,et al.  Photocatalytic Water Splitting over Pt−TiO2 in the Presence of Sacrificial Reagents , 2005 .

[191]  R. Finke,et al.  Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10-: identification of heterogeneous CoOx as the dominant catalyst. , 2011, Journal of the American Chemical Society.

[192]  Daniel G Nocera,et al.  The artificial leaf. , 2012, Accounts of chemical research.

[193]  Daniel G. Nocera,et al.  A self-healing oxygen-evolving catalyst. , 2009, Journal of the American Chemical Society.

[194]  R. Pan,et al.  Solar energy conversion by chloroplast photoelectrochemical cells , 1981, Nature.

[195]  William Davis,et al.  Optimal year-round operation for methane production from CO2 and water using wind and/or solar energy , 2014 .

[196]  Jeyraj Selvaraj,et al.  Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation , 2015 .

[197]  Tsutomu Miyasaka,et al.  The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy , 2004 .

[198]  H. Pettersson,et al.  Dye-sensitized solar cells. , 2010, Chemical Reviews.

[199]  J. S. Lee,et al.  Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems , 2009 .

[200]  Yu Wang,et al.  Cost and CO2 reductions of solar photovoltaic power generation in China: Perspectives for 2020 , 2014 .

[201]  E. Dinjus,et al.  Nickel‐catalyzed electrochemical carboxylation of epoxides: mechanistic aspects , 2001 .

[202]  D. M. Depoy,et al.  The Status of Thermophotovoltaic Energy Conversion Technology at Lockheed Martin Corp. , 2004 .

[203]  John S. Anderson,et al.  Reactions of CO(2) and CS(2) with 1,2-bis(di-tert-butylphosphino)ethane complexes of nickel(0) and nickel(I). , 2010, Inorganic chemistry.

[204]  Daniel G Nocera,et al.  A functionally stable manganese oxide oxygen evolution catalyst in acid. , 2014, Journal of the American Chemical Society.

[205]  Wojciech M. Budzianowski,et al.  Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors , 2012 .

[206]  B. Bhanage,et al.  Carbon dioxide: a renewable feedstock for the synthesis of fine and bulk chemicals , 2010 .

[207]  Jie Song,et al.  Polyoxometalates in the Design of Effective and Tunable Water Oxidation Catalysts , 2011 .

[208]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[209]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[210]  Andrew B. Bocarsly,et al.  Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. , 2008, Journal of the American Chemical Society.

[211]  Allen J. Bard,et al.  Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. , 2012, Nano letters.

[212]  D. Nocera,et al.  Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. , 2009, Journal of the American Chemical Society.

[213]  Krishnan Rajeshwar,et al.  Photocatalytic production of hydrogen from electrodeposited p-Cu2O film and sacrificial electron donors , 2007 .

[214]  T. Buonassisi,et al.  Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst , 2011, Proceedings of the National Academy of Sciences.

[215]  D. Nocera Living healthy on a dying planet. , 2009, Chemical Society reviews.

[216]  S. Bernhard,et al.  Fast water oxidation using iron. , 2010, Journal of the American Chemical Society.

[217]  Janusz Nowotny,et al.  Titanium dioxide for solar-hydrogen I. Functional properties , 2007 .

[218]  Ibram Ganesh,et al.  Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications , 2012 .

[219]  James Barber,et al.  Architecture of the Photosynthetic Oxygen-Evolving Center , 2004, Science.

[220]  Christoph J. Brabec,et al.  Production Aspects of Organic Photovoltaics and Their Impact on the Commercialization of Devices , 2005 .

[221]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[222]  P. Kohl,et al.  Hybrid polymer electrolyte fuel cells: alkaline electrodes with proton conducting membrane. , 2010, Angewandte Chemie.

[223]  Yohan Park,et al.  Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. , 2011, Nature materials.

[224]  J. Turner A Nickel Finish Protects Silicon Photoanodes for Water Splitting , 2013, Science.

[225]  Andrew B. Bocarsly,et al.  A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential , 1994 .

[226]  B. Li,et al.  Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation , 2013 .

[227]  Reiner Buck,et al.  Dish-Stirling Systems: An Overview of Development and Status , 2003 .

[228]  F. van Bergen,et al.  Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2-enhanced coal bed methane production , 2004 .

[229]  James Barber,et al.  Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement , 2011, Science.

[230]  Daniel G Nocera,et al.  Personalized energy: the home as a solar power station and solar gas station. , 2009, ChemSusChem.

[231]  Antonio Licciulli,et al.  The challenge of high-performance selective emitters for thermophotovoltaic applications , 2003 .

[232]  C. Hill,et al.  Introduction: Polyoxometalates-Multicomponent Molecular Vehicles To Probe Fundamental Issues and Practical Problems. , 1998, Chemical reviews.

[233]  E. Quartarone,et al.  A photocatalytic water splitting device for separate hydrogen and oxygen evolution. , 2007, Chemical communications.

[234]  Wei Liu,et al.  Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change? , 2014 .

[235]  Eric L. Miller,et al.  Photoelectrolysis of water using thin copper gallium diselenide electrodes , 2008 .

[236]  Keisuke Kawakami,et al.  Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å , 2011, Nature.

[237]  P. Gallezot,et al.  Catalytic conversion of biomass: challenges and issues. , 2008, ChemSusChem.

[238]  Derek Abbott,et al.  Keeping the Energy Debate Clean: How Do We Supply the World's Energy Needs? , 2010, Proceedings of the IEEE.

[239]  Brian D. Iverson,et al.  High-efficiency thermodynamic power cycles for concentrated solar power systems , 2014 .

[240]  Aldo Steinfeld,et al.  Design of a 10 MW Particle-Flow Reactor for Syngas Production by Steam-Gasification of Carbonaceous Feedstock Using Concentrated Solar Energy , 2010 .

[241]  D. L. King,et al.  Solar cell efficiency tables (version 28) , 2006 .

[242]  Javier J. Concepcion,et al.  Making oxygen with ruthenium complexes. , 2009, Accounts of chemical research.

[243]  Tianquan Lian,et al.  Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. , 2012, Journal of the American Chemical Society.

[244]  Masaki Murayama,et al.  Dye-sensitized solar cell using novel tandem cell structure , 2007 .

[245]  H. Jakobsen,et al.  Engineering TiO2 nanomaterials for CO2 conversion/solar fuels , 2012 .

[246]  Jie Song,et al.  Efficient light-driven carbon-free cobalt-based molecular catalyst for water oxidation. , 2011, Journal of the American Chemical Society.

[247]  Jianwei Sun,et al.  Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes. , 2009, Journal of the American Chemical Society.

[248]  Y. Geletii,et al.  Homogeneous light-driven water oxidation catalyzed by a tetraruthenium complex with all inorganic ligands. , 2009, Journal of the American Chemical Society.

[249]  J. A. Seabold,et al.  Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a WO3 Photoanode , 2011 .

[250]  F. Chang,et al.  Hydrogenation of CO2 over nickel catalysts supported on rice husk ash prepared by ion exchange , 2001 .

[251]  G. Centi,et al.  Opportunities and prospects in the chemical recycling of carbon dioxide to fuels , 2009 .

[252]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .