Bayesian Monte Carlo Filtering for Stochastic Volatility Models
暂无分享,去创建一个
[1] Michael A. West,et al. Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.
[2] Luc Bauwens,et al. Bayesian Inference in Dynamic Econometric Models , 2000 .
[3] Jonathan D. Cryer,et al. Time Series Analysis , 1986 .
[4] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[5] Jean-Michel Marin,et al. Iterated importance sampling in missing data problems , 2006, Comput. Stat. Data Anal..
[6] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[7] Mike K. P. So,et al. A Stochastic Volatility Model With Markov Switching , 1998 .
[8] M. Pitt,et al. Likelihood analysis of non-Gaussian measurement time series , 1997 .
[9] Nicholas G. Polson,et al. A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .
[10] Chang‐Jin Kim,et al. State Space Models with Regime Switching , 1999 .
[11] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[12] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[13] N. G. Best,et al. Dynamic conditional independence models and Markov chain Monte Carlo methods , 1997 .
[14] Geir Storvik,et al. Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..
[15] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[16] S. Frühwirth-Schnatter. Data Augmentation and Dynamic Linear Models , 1994 .
[17] Andrew Harvey,et al. Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .
[18] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[19] N. Shephard,et al. Markov chain Monte Carlo methods for stochastic volatility models , 2002 .
[20] Michael A. West. Mixture Models, Monte Carlo, Bayesian Updating and Dynamic Models , 1992 .
[21] Michael A. West,et al. Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..
[22] R. Casarin. Bayesian Inference for Generalised Markov Switching Stochastic Volatility Models , 2004 .
[23] Christian P. Robert,et al. The Bayesian choice , 1994 .
[24] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[25] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[26] Christian Musso,et al. Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.
[27] N. Shephard. Partial non-Gaussian state space , 1994 .
[28] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[29] C. P. Robert,et al. Estimation bayésienne approximative par échantillonnage préférentiel , 2005 .
[30] Jun S. Liu,et al. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .
[31] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[32] Peter Muller,et al. Alternatives to the Gibbs Sampling Scheme , 1992 .
[33] N. Shephard,et al. The simulation smoother for time series models , 1995 .
[34] R. Kohn,et al. On Gibbs sampling for state space models , 1994 .
[35] Jean-Michel Marin,et al. Population Monte Carlo for Ion Channel Restoration , 2002 .
[36] Melvin J. Hinich,et al. Time Series Analysis by State Space Methods , 2001 .
[37] N. Shephard,et al. Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .
[38] Jun S. Liu,et al. Sequential Monte Carlo methods for dynamic systems , 1997 .
[39] W. Gilks,et al. Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .