Bayesian Monte Carlo Filtering for Stochastic Volatility Models

Modelling of the fi nancial variable evolution represents an important issue in financial econometrics. Stochastic dynamic models allow to describe more accurately many features of the financial variables, but often there exists a trade-off between the modelling accuracy and the complexity. Moreover the degree of complexity is increased by the use of latent factors which are usually introduced in time series analysis, in order to capture the heterogeneous time evolution of the observed process. The presence of unobserved components makes the maximum likelihood inference more difficult to apply. Thus the Bayesian approach is preferable since it allows to treat general state space models and makes easier the simulation based approach to parameters estimation and latent factors filtering. The main aim of this work is to produce an updated review of Bayesian inference approaches for latent factor models. Moreover, we provide a review of simulation based filtering methods in a Bayesian perspective focusing, through some examples, on stochastic volatility models.

[1]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[2]  Luc Bauwens,et al.  Bayesian Inference in Dynamic Econometric Models , 2000 .

[3]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[4]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[5]  Jean-Michel Marin,et al.  Iterated importance sampling in missing data problems , 2006, Comput. Stat. Data Anal..

[6]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[7]  Mike K. P. So,et al.  A Stochastic Volatility Model With Markov Switching , 1998 .

[8]  M. Pitt,et al.  Likelihood analysis of non-Gaussian measurement time series , 1997 .

[9]  Nicholas G. Polson,et al.  A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .

[10]  Chang‐Jin Kim,et al.  State Space Models with Regime Switching , 1999 .

[11]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[12]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[13]  N. G. Best,et al.  Dynamic conditional independence models and Markov chain Monte Carlo methods , 1997 .

[14]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[15]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[16]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[17]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[18]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[19]  N. Shephard,et al.  Markov chain Monte Carlo methods for stochastic volatility models , 2002 .

[20]  Michael A. West Mixture Models, Monte Carlo, Bayesian Updating and Dynamic Models , 1992 .

[21]  Michael A. West,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..

[22]  R. Casarin Bayesian Inference for Generalised Markov Switching Stochastic Volatility Models , 2004 .

[23]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[24]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[25]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[26]  Christian Musso,et al.  Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[27]  N. Shephard Partial non-Gaussian state space , 1994 .

[28]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[29]  C. P. Robert,et al.  Estimation bayésienne approximative par échantillonnage préférentiel , 2005 .

[30]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[31]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[32]  Peter Muller,et al.  Alternatives to the Gibbs Sampling Scheme , 1992 .

[33]  N. Shephard,et al.  The simulation smoother for time series models , 1995 .

[34]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[35]  Jean-Michel Marin,et al.  Population Monte Carlo for Ion Channel Restoration , 2002 .

[36]  Melvin J. Hinich,et al.  Time Series Analysis by State Space Methods , 2001 .

[37]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[38]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[39]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .