Ocean fertilization for geoengineering: A review of effectiveness, environmental impacts and emerging governance

[1]  P. Williamson,et al.  Ocean acidification in a geoengineering context , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  K. Denman,et al.  The effect of vertical and horizontal dilution on fertilized patch experiments , 2012 .

[3]  Rüdiger Röttgers,et al.  Deep carbon export from a Southern Ocean iron-fertilized diatom bloom , 2012, Nature.

[4]  V. Galaz Geo-engineering, Governance, and Social-Ecological Systems: Critical Issues and Joint Research Needs , 2012 .

[5]  K. Caldeira,et al.  Greenhouse gases, climate change and the transition from coal to low-carbon electricity , 2012 .

[6]  D. Garbe‐Schönberg,et al.  Surface ocean iron fertilization: The role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean , 2011 .

[7]  P. Quinn,et al.  The case against climate regulation via oceanic phytoplankton sulphur emissions , 2011, Nature.

[8]  A. Jamieson,et al.  The Effects of Natural Iron Fertilisation on Deep-Sea Ecology: The Crozet Plateau, Southern Indian Ocean , 2011, PloS one.

[9]  Kenneth L. Smith,et al.  Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea , 2011 .

[10]  S. Gardiner Some Early Ethics of Geoengineering the Climate: A Commentary on the Values of the Royal Society Report , 2011, The Ethics of Nanotechnology, Geoengineering and Clean Energy.

[11]  K. Tsubaki,et al.  Evidences of increasing primary production in the ocean by Stommel's perpetual salt fountain , 2011 .

[12]  P. Hill,et al.  Did dilution limit the phytoplankton response to iron addition in HNLCLSi sub-Antarctic waters during the SAGE experiment? , 2011 .

[13]  C. Law,et al.  Control of the phytoplankton response during the SAGE experiment: A synthesis , 2011 .

[14]  R. Thompson,et al.  The SOLAS air-sea gas exchange experiment (SAGE) 2004 , 2011 .

[15]  I. Jones Contrasting micro- and macro-nutrient nourishment of the ocean , 2011 .

[16]  L. Dilling,et al.  Geoengineering, Ocean Fertilization, and the Problem of Permissible Pollution , 2011, The Ethics of Nanotechnology, Geoengineering and Clean Energy.

[17]  D. M. Nelson,et al.  Co-limitation of diatoms by iron and silicic acid in the equatorial Pacific , 2011 .

[18]  Effect of Ocean Iron Fertilization on the Phytoplankton Biological Carbon Pump , 2011 .

[19]  Alice Bows,et al.  Beyond ‘dangerous’ climate change: emission scenarios for a new world , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  I. Jones Geoengineering the climate , 2011 .

[21]  A. Oschlies,et al.  Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization , 2010 .

[22]  K. Furuya,et al.  Lagrangian observation of phytoplankton dynamics at an artificially enriched subsurface water in Sagami Bay, Japan , 2010 .

[23]  Kenneth W. Bruland,et al.  Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic Pacific , 2010, Proceedings of the National Academy of Sciences.

[24]  A. Oschlies,et al.  Methods for greenhouse gas offset accounting: A case study of ocean iron fertilization , 2010 .

[25]  K. Elliott Geoengineering and the Precautionary Principle , 2010 .

[26]  L. A. Coogan,et al.  Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific , 2010 .

[27]  P. Boyd,et al.  The biogeochemical cycle of iron in the ocean , 2010 .

[28]  G. Mann,et al.  Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide , 2010 .

[29]  B. Tilbrook,et al.  The influence of iron and light on net community production in the Subantarctic and Polar Frontal Zones , 2010 .

[30]  M. Scranton,et al.  Marine hypoxia/anoxia as a source of CH4 and N2O. , 2010 .

[31]  Roger Allan Cropp,et al.  Australian dust storms in 2002–2003 and their impact on Southern Ocean biogeochemistry , 2010 .

[32]  Eric P. Achterberg,et al.  Iron biogeochemistry across marine systems – progress from the past decade , 2010 .

[33]  V. Trainer,et al.  Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas , 2010, Proceedings of the National Academy of Sciences.

[34]  David M. Karl,et al.  An Open Ocean Trial of Controlled Upwelling Using Wave Pump Technology , 2010 .

[35]  M. Pahlow,et al.  Climate engineering by artificial ocean upwelling: Channelling the sorcerer's apprentice , 2010 .

[36]  Christine Bertram,et al.  Ocean iron fertilization in the context of the Kyoto protocol and the post-Kyoto process , 2010 .

[37]  K. Caldeira,et al.  Can ocean iron fertilization mitigate ocean acidification? , 2010 .

[38]  K. Denman,et al.  Ocean fertilization: a scientific summary for policy makers; 2010 , 2011 .

[39]  H. Saito,et al.  Responses of DMS in the seawater and atmosphere to iron enrichment in the subarctic western North Pacific (SEEDS-II) , 2009 .

[40]  M. Uematsu,et al.  Production and air–sea flux of halomethanes in the western subarctic Pacific in relation to phytoplankton pigment concentrations during the iron fertilization experiment (SEEDS II) , 2009 .

[41]  W. K. Johnson,et al.  Changes in iron concentrations and bio-availability during an open-ocean mesoscale iron enrichment in the western subarctic Pacific, SEEDS II , 2009 .

[42]  H. Saito,et al.  Meso- and microzooplankton responses to an in situ iron fertilization experiment (SEEDS II) in the northwest subarctic Pacific , 2009 .

[43]  T. Ono,et al.  Primary productivity, bacterial productivity and nitrogen uptake in response to iron enrichment during the SEEDS II , 2009 .

[44]  C. Fisher,et al.  Distribution of diffuse flow megafauna in two sites on the Eastern Lau Spreading Center, Tonga , 2009 .

[45]  J. Shepherd,et al.  Geoengineering the Climate: Science, Governance and Uncertainty , 2009 .

[46]  S. Chisholm,et al.  Ocean Fertilization Science, Policy, and Commerce , 2009 .

[47]  T. Lenton,et al.  The radiative forcing potential of different climate geoengineering options , 2009 .

[48]  A. Oschlies,et al.  Low efficiency of nutrient translocation for enhancing oceanic uptake of carbon dioxide , 2009 .

[49]  P. Croot,et al.  The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review , 2009 .

[50]  P. Boyd,et al.  Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean , 2009 .

[51]  L. Bopp,et al.  Impact of enhanced vertical mixing on marine biogeochemistry: lessons for geo-engineering and natural variability , 2009 .

[52]  Richard S. Lampitt,et al.  Southern Ocean deep-water carbon export enhanced by natural iron fertilization , 2009, Nature.

[53]  T. R. Anderson,et al.  Ocean fertilization: a potential means of geoengineering? , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[54]  V. Smetácek,et al.  The next generation of iron fertilization experiments in the Southern Ocean , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  Ricardo M Letelier,et al.  Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes , 2008 .

[56]  M. Orbach Cultural context of ocean fertilization , 2008 .

[57]  C. Law,et al.  Predicting and monitoring the effects of large-scale ocean iron fertilization on marine trace gas emissions , 2008 .

[58]  M. Leinen Building relationships between scientists and business in ocean iron fertilization , 2008 .

[59]  Andrew J. Watson,et al.  Designing the next generation of ocean iron fertilization experiments , 2008 .

[60]  K. Timmermans,et al.  Efficiency of carbon removal per added iron in ocean iron fertilization , 2008 .

[61]  D. Freestone,et al.  Ocean iron fertilization and international law , 2008 .

[62]  Kenneth L. Denman,et al.  Climate change, ocean processes and ocean iron fertilization , 2008 .

[63]  P. Boyd,et al.  Implications of large-scale iron fertilization of the oceans , 2008 .

[64]  P. Boyd,et al.  Predicting and verifying the intended and unintended consequences of large-scale ocean iron fertilization , 2008 .

[65]  Anand Gnanadesikan,et al.  Marine Ecology Progress Series Mar Ecol Prog Ser Role of Nutrients in the Carbon Cycle Export Is Not Enough: Nutrient Cycling and Carbon Sequestration , 2022 .

[66]  J. Nishioka,et al.  Organic iron (III) complexing ligands during an iron enrichment experiment in the western subarctic North Pacific , 2008 .

[67]  J. Burkholder,et al.  Ocean urea fertilization for carbon credits poses high ecological risks. , 2008, Marine pollution bulletin.

[68]  J. Dixon Macro and micro nutrient limitation of microbial productivity in oligotrophic subtropical Atlantic waters , 2008 .

[69]  Kenneth L. Denman,et al.  Preindustrial, historical, and fertilization simulations using a global ocean carbon model with new parameterizations of iron limitation, calcification, and N2 fixation , 2008 .

[70]  S. Doney,et al.  The impact on atmospheric CO 2 of iron fertilization induced changes in the ocean's biological pump , 2008 .

[71]  J. Lubchenco,et al.  Emergence of Anoxia in the California Current Large Marine Ecosystem , 2008, Science.

[72]  J. Shepherd,et al.  Geo-engineering might cause, not cure, problems , 2007, Nature.

[73]  James E. Lovelock,et al.  Ocean pipes could help the Earth to cure itself , 2007, Nature.

[74]  B. Quéguiner,et al.  Effect of natural iron fertilization on carbon sequestration in the Southern Ocean , 2007, Nature.

[75]  Thomas W. Trull,et al.  Understanding the export of biogenic particles in oceanic waters: Is there consensus? , 2007 .

[76]  E. Boyle,et al.  Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions , 2007, Science.

[77]  Shigenao Maruyama,et al.  Continuous measurement of an artificial upwelling of deep sea water induced by the perpetual salt fountain , 2007 .

[78]  M. Uematsu,et al.  Atmospheric trace gas measurements during SEEDS-II over the northwestern pacific , 2006 .

[79]  William K. W. Li,et al.  Microbial response to a mesoscale iron enrichment in the NE Subarctic Pacific: Bacterial community composition , 2006 .

[80]  A. Tsuda,et al.  Phytoplankton processes during a mesoscale iron enrichment in the NE subarctic Pacific: Part I-Biomass and assemblage , 2006 .

[81]  A. Marchetti,et al.  DMSP and DMS dynamics during a mesoscale iron fertilization experiment in the Northeast Pacific-Part I: Temporal and vertical distributions , 2006 .

[82]  J. Dower,et al.  Mesozooplankton community response during the SERIES iron enrichment experiment in the subarctic NE Pacific , 2006 .

[83]  William K. W. Li,et al.  Microbial response to a mesoscale iron enrichment in the NE subarctic Pacific: heterotrophic bacterial processes , 2006 .

[84]  J. Nishioka,et al.  Phytoplankton community response to Fe and temperature gradients in the NE (SERIES) and NW (SEEDS) subarctic Pacific Ocean , 2006 .

[85]  J. Nishioka,et al.  Mesozooplankton response to iron enrichment during the diatom bloom and bloom decline in SERIES (NE Pacific) , 2006 .

[86]  L. Bopp,et al.  Globalizing results from ocean in situ iron fertilization studies , 2006 .

[87]  C. Law,et al.  High rates of nitrogen fixation during an in‐situ phosphate release experiment in the Eastern Mediterranean Sea , 2006 .

[88]  Koji Suzuki,et al.  Role of heterotrophic dinoflagellate Gyrodinium sp. in the fate of an iron induced diatom bloom , 2006 .

[89]  I. Peeken,et al.  Nitrous oxide measurements during EIFEX, the European Iron Fertilization Experiment in the subpolar South Atlantic Ocean , 2005 .

[90]  M. Krom,et al.  Phytoplankton response to a Lagrangian phosphate addition in the Levantine Sea (Eastern Mediterranean) , 2005 .

[91]  F. Rassoulzadegan,et al.  Summary and overview of the CYCLOPS P addition Lagrangian experiment in the Eastern Mediterranean , 2005 .

[92]  Ulf Riebesell,et al.  Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment , 2005 .

[93]  David Archer,et al.  Fate of fossil fuel CO2 in geologic time , 2005 .

[94]  S Psarra,et al.  Nature of Phosphorus Limitation in the Ultraoligotrophic Eastern Mediterranean , 2005, Science.

[95]  P. Liss,et al.  Ocean fertilization with iron : effects on climate and air quality , 2005 .

[96]  A. Watson,et al.  Iron and mixing affect biological carbon uptake in SOIREE and EisenEx, two Southern Ocean iron fertilisation experiments , 2005 .

[97]  A. Tsuda,et al.  An in situ iron-enrichment experiment in the western subarctic Pacific (SEEDS): Introduction and summary , 2005 .

[98]  J. Nishioka,et al.  Responses of diatoms to iron-enrichment (SEEDS) in the western subarctic Pacific, temporal and spatial comparisons , 2005 .

[99]  F. Rassoulzadegan,et al.  Thingstad TF, Krom MD, Mantoura RFC, Flaten GAF, Groom S, Herut B et al.. Nature of phosphorus limitation in the ultraoligotrophic Eastern Mediterranean. Science 309: 1068-1071 , 2005 .

[100]  P. Liss,et al.  Iron‐induced changes in oceanic sulfur biogeochemistry , 2004 .

[101]  D. Blake,et al.  Changing concentrations of CO, CH(4), C(5)H(8), CH(3)Br, CH(3)I, and dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[102]  John E Andrews,et al.  The Effects of Iron Fertilization on Carbon Sequestration in the Southern Ocean , 2004, Science.

[103]  Russ E. Davis,et al.  Robotic Observations of Enhanced Carbon Biomass and Export at 55°S During SOFeX , 2004, Science.

[104]  R. Matear,et al.  Enhancement of oceanic uptake of anthropogenic CO2 by macronutrient fertilization , 2004 .

[105]  William Miller,et al.  The decline and fate of an iron-induced subarctic phytoplankton bloom , 2004, Nature.

[106]  N. Gruber,et al.  Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions , 2003 .

[107]  R. Slater,et al.  Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production , 2003 .

[108]  J. Nishioka,et al.  A Mesoscale Iron Enrichment in the Western Subarctic Pacific Induces a Large Centric Diatom Bloom , 2003, Science.

[109]  P. Boyd The role of iron in the biogeochemistry of the Southern Ocean and equatorial Pacific: a comparison of in situ iron enrichments , 2002 .

[110]  L. Levin,et al.  ENVIRONMENTAL INFLUENCES ON REGIONAL DEEP-SEA SPECIES DIVERSITY , 2001 .

[111]  C. Law,et al.  Nitrous oxide flux and response to increased iron availability in the Antarctic Circumpolar Current , 2001 .

[112]  P. Worsfold,et al.  The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean , 2001 .

[113]  E. Boyle,et al.  Glacial/interglacial variations in atmospheric carbon dioxide , 2000, Nature.

[114]  P. Boyd,et al.  Importance of stirring in the development of an iron-fertilized phytoplankton bloom , 2000, Nature.

[115]  Andrew J. Watson,et al.  A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization , 2000, Nature.

[116]  Steven R. Hare,et al.  Empirical evidence for North Pacific regime shifts in 1977 and 1989 , 2000 .

[117]  K. Johnson,et al.  The behaviour of iron and other trace elements during the IronEx-I and PlumEx experiments in the Equatorial Pacific , 1998 .

[118]  K. Bruland,et al.  The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment , 1997 .

[119]  P. Liss,et al.  Increased dimethyl sulphide concentrations in sea water from in situ iron enrichment , 1996, Nature.

[120]  P. Falkowski,et al.  Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean , 1996, Nature.

[121]  A. J. Watson,et al.  Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean , 1994, Nature.

[122]  A. Watson,et al.  Minimal effect of iron fertilization on sea-surface carbon dioxide concentrations , 1994, Nature.

[123]  A. Cropper Convention on Biological Diversity , 1993, Environmental Conservation.

[124]  Jed A. Fuhrman,et al.  Possible biogeochemical consequences of ocean fertilization , 1991 .

[125]  J. Sarmiento,et al.  Three‐dimensional simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry , 1991 .

[126]  W. Sunda,et al.  Low iron requirement for growth in oceanic phytoplankton , 1991, Nature.

[127]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in Antarctic waters , 1990 .