A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE

We report the likely identification of a substantial population of massive M ∼ 1011 M☉ galaxies at z ∼ 4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey (ZFOURGE). The observed spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000 Å breaks, relatively old stellar populations, large stellar masses, and low SFRs, with a median specific SFR of 2.9 ± 1.8 × 10−11 yr−1. Ultradeep Herschel/PACS 100 μm, 160 μm and Spitzer/MIPS 24 μm data reveal no dust-obscured SFR activity for 15/19(79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the spectral energy distribution fit, indicating independently that the average specific SFR is at least 10 × smaller than that of typical star-forming galaxies at z ∼ 4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8 ± 0.7 × 10−5 Mpc−3 to a limit of log10M/M☉ ⩾ 10.6, which is 10 × and 80 × lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (∼35%) of z ∼ 4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8 Gyr and stellar mass of 0.8 × 1011 M☉, the galaxies likely started forming stars before z = 5, with SFRs well in excess of 100 M☉ yr−1, far exceeding that of similarly abundant UV-bright galaxies at z ⩾ 4. This suggests that most of the star formation in the progenitors of quiescent z ∼ 4 galaxies was obscured by dust.

[1]  Stephen A. Smee,et al.  FourStar: The Near-Infrared Imager for the 6.5 m Baade Telescope at Las Campanas Observatory , 2013 .

[2]  H. Rix,et al.  QUIESCENT GALAXIES IN THE 3D-HST SURVEY: SPECTROSCOPIC CONFIRMATION OF A LARGE NUMBER OF GALAXIES WITH RELATIVELY OLD STELLAR POPULATIONS AT z ∼ 2 , 2013, 1305.1943.

[3]  J. Bock,et al.  HerMES: THE CONTRIBUTION TO THE COSMIC INFRARED BACKGROUND FROM GALAXIES SELECTED BY MASS AND REDSHIFT , 2013, 1304.0446.

[4]  J. Dunlop,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.

[5]  G. Brammer,et al.  WHAT ARE THE PROGENITORS OF COMPACT, MASSIVE, QUIESCENT GALAXIES AT z = 2.3? THE POPULATION OF MASSIVE GALAXIES AT z > 3 FROM NMBS AND CANDELS , 2013, 1301.7063.

[6]  Leiden,et al.  An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field South: high-resolution 870 μm source counts , 2012, 1210.0249.

[7]  Michele Cirasuolo,et al.  THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.

[8]  Edinburgh,et al.  An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field‐South: detection of [C ii] at z = 4.4 , 2012, 1209.1390.

[9]  J. Dunlop,et al.  KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY , 2012, 1208.3529.

[10]  D. O. Astronomy,et al.  THE STAR FORMATION RATE FUNCTION FOR REDSHIFT z ∼ 4–7 GALAXIES: EVIDENCE FOR A UNIFORM BUILDUP OF STAR-FORMING GALAXIES DURING THE FIRST 3 Gyr OF COSMIC TIME , 2012, 1204.3626.

[11]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[12]  V. A. Bruce,et al.  AN EXPONENTIAL DECLINE AT THE BRIGHT END OF THE z = 6 GALAXY LUMINOSITY FUNCTION , 2012, 1202.5330.

[13]  Stijn Wuyts,et al.  WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE z ∼ 2 FROM CANDELS , 2011, 1110.3786.

[14]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[15]  M. Dickinson,et al.  z ∼ 4 Hα EMITTERS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: TRACING THE DOMINANT MODE FOR GROWTH OF GALAXIES , 2011 .

[16]  Jordi Cepa,et al.  ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3 , 2011, 1106.5502.

[17]  B. Lundgren,et al.  THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z ∼ 3 , 2011, 1105.4609.

[18]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[19]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[20]  Kyoung-Soo Lee,et al.  THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.

[21]  H. Rix,et al.  A COSMIC VARIANCE COOKBOOK , 2010, 1001.1737.

[22]  H. Hildebrandt,et al.  The UV galaxy luminosity function at z = 3–5 from the CFHT Legacy Survey Deep fields , 2010, 1009.0758.

[23]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[24]  M. Franx,et al.  STAR FORMATION RATES AND STELLAR MASSES OF z = 7–8 GALAXIES FROM IRAC OBSERVATIONS OF THE WFC3/IR EARLY RELEASE SCIENCE AND THE HUDF FIELDS , 2009, 0911.1356.

[25]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[26]  A. Cimatti,et al.  Searching for massive galaxies at z ≥ 3.5 in GOODS-North , 2009, 0901.3341.

[27]  L. Pentericci,et al.  The fraction of quiescent massive galaxies in the early Universe , 2009, 0901.2898.

[28]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .

[29]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[30]  I. Smail,et al.  THE CHANDRA DEEP FIELD-SOUTH SURVEY: 4 Ms SOURCE CATALOGS , 2008, 0806.3968.

[31]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[32]  H. Ferguson,et al.  A Population of Massive and Evolved Galaxies at z ≳ 5 , 2007, 0710.0406.

[33]  Itziar Aretxaga,et al.  Evidence for a Population of High-Redshift Submillimeter Galaxies from Interferometric Imaging , 2007, 0708.1020.

[34]  IRAC Mid-Infrared Imaging of the Hubble Deep Field-South: Star Formation Histories and Stellar Masses of Red Galaxies at z > 2* , 2005, astro-ph/0504219.

[35]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[36]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[37]  R. Marzke,et al.  Discovery of Massive Evolved Galaxies at z > 3 in the Hubble Ultra Deep Field , 2004, astro-ph/0405432.

[38]  L. Kewley,et al.  The Chandra Deep Field-South: Optical Spectroscopy. I. , 2003, astro-ph/0312324.

[39]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[40]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[41]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[42]  Hia,et al.  Differential Galaxy Evolution in Cluster and Field Galaxies at z ≈ 0.3 , 1999, astro-ph/9906470.

[43]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.