C-Band Dual-Doppler Retrievals in Complex Terrain: Improving the Knowledge of Severe Storm Dynamics in Catalonia

[1]  A. Sairouní,et al.  Results of the meteorological model WRF-ARW over Catalonia, using different parameterizations of convection and cloud microphysics , 2010 .

[2]  Ana Iglesias,et al.  Climate change and interconnected risks to sustainable development in the Mediterranean , 2018, Nature Climate Change.

[3]  A. Protat,et al.  The Effect of Radial Velocity Gridding Artifacts on Variationally Retrieved Vertical Velocities , 2010 .

[4]  C. Doswell,et al.  Severe Thunderstorm Evolution and Mesocyclone Structure as Related to Tornadogenesis , 1979 .

[5]  Oriol Rodriguez,et al.  A methodology to conduct wind damage field surveys for high-impact weather events of convective origin , 2020 .

[6]  Olivier Bousquet,et al.  A Multiple-Doppler Synthesis and Continuity Adjustment Technique (MUSCAT) to Recover Wind Components from Doppler Radar Measurements , 1998 .

[7]  A. Rilling,et al.  NCAR/UNIDATA CfRadial data file format: Proposed CF-compliant netCDF format for moments data for RADAR and LIDAR in radial coordinates - v1.3 , 2011 .

[8]  Cáceres Radar data assimilation impact over nowcasting a mesoscale convective system in Catalonia using the WRF model , 2015 .

[9]  Roger Edwards,et al.  Reliability and Climatological Impacts of Convective Wind Estimations , 2018, Journal of Applied Meteorology and Climatology.

[10]  Joshua Wurman,et al.  Finescale Dual-Doppler Analysis of Hurricane Boundary Layer Structures in Hurricane Frances (2004) at Landfall , 2014 .

[11]  Paul Markowski,et al.  Finescale Single- and Dual-Doppler Analysis of Tornado Intensification, Maintenance, and Dissipation in the Orleans, Nebraska, Supercell , 2010 .

[12]  Corey K. Potvin,et al.  Assessing Errors in Variational Dual-Doppler Wind Syntheses of Supercell Thunderstorms Observed by Storm-Scale Mobile Radars , 2012 .

[13]  M. Aran,et al.  Atmospheric circulation patterns associated with hail events in Lleida (Catalonia) , 2011 .

[14]  Urs Germann,et al.  Real-Time Wind Synthesis from Doppler Radar Observations during the Mesoscale Alpine Programme , 2000 .

[15]  N. Pineda,et al.  Uncertainty of precipitation estimates in convective events by the Meteorological Service of Catalonia radar network. , 2009 .

[16]  R. Romero,et al.  Tornadoes over complex terrain: an analysis of the 28th August 1999 tornadic event in eastern Spain , 2003 .

[17]  Tomeu Rigo,et al.  Forecasting hailfall using parameters for convective cells identified by radar , 2016 .

[18]  Richard J. Doviak,et al.  Error Estimation in Wind Fields Derived from Dual-Doppler Radar Measurement , 1976 .

[19]  P. Harr,et al.  Observations of the Eyewall Structure of Typhoon Sinlaku (2008) during the Transformation Stage of Extratropical Transition , 2014 .

[20]  Tomeu Rigo,et al.  Lightning jump as a nowcast predictor: Application to severe weather events in Catalonia , 2017 .

[21]  N. Pineda,et al.  An observational study of the 7 September 2005 Barcelona tornado outbreak , 2007 .

[22]  Alexander D. Schenkman,et al.  High-Resolution, Rapid-Scan Dual-Doppler Retrievals of Vertical Velocity in a Simulated Supercell , 2019, Journal of Atmospheric and Oceanic Technology.

[23]  Corey K. Potvin,et al.  Impact of a Vertical Vorticity Constraint in Variational Dual-Doppler Wind Analysis: Tests with Real and Simulated Supercell Data , 2012 .

[25]  K. Emanuel,et al.  Air-Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds Observed during CBLAST , 2012 .

[26]  J. Bech,et al.  Sounding‐derived parameters associated with tornadic storms in Catalonia , 2018 .

[27]  Martin Hagen,et al.  On the use of advanced Doppler radar techniques to determine horizontal wind fields for operational weather surveillance , 2004 .

[28]  R. Rotunno,et al.  Orographic effects on rainfall in MAP cases IOP 2b and IOP 8 , 2003 .

[29]  M. J. Carpenter,et al.  Doppler Radar Sampling Limitations in Convective Storms , 1985 .

[30]  Pierre Tabary,et al.  Operational Multiple-Doppler Wind Retrieval Inferred from Long-Range Radial Velocity Measurements , 2008 .

[31]  P. Markowski,et al.  Single- and Dual-Doppler Analysis of a Tornadic Vortex and Surrounding Storm-Scale Flow in the Crowell, Texas, Supercell of 30 April 2000 , 2008 .

[32]  Joshua Wurman,et al.  Vector Winds from a Single-Transmitter Bistatic Dual-Doppler Radar Network , 1994 .

[33]  Peter S. Ray,et al.  Multiple-Doppler Radar Network Design , 1979 .

[34]  José Luis Sánchez,et al.  Atmospheric patterns associated with hailstorm days in the Ebro Valley, Spain , 2011 .

[35]  O. Bousquet,et al.  Development of a nationwide real‐time 3‐D wind and reflectivity radar composite in France , 2014 .

[36]  Corey K. Potvin,et al.  Use of a Vertical Vorticity Equation in Variational Dual-Doppler Wind Analysis , 2009 .

[37]  L. J. Miller,et al.  A dual doppler radar method for the determination of wind velocities within precipitating weather systems , 1974 .

[38]  Katsuyuki V. Ooyama,et al.  Scale-Controlled Objective Analysis , 1987 .

[39]  Adam J. Clark,et al.  Climatology of Storm Reports Relative to Upper-Level Jet Streaks , 2009 .

[40]  H. Bluestein,et al.  Modes of isolated, severe convective storm formation along the dryline , 1993 .

[41]  Robert P. Davies-Jones Dual-Doppler Radar Coverage Area as a Function of Measurement Accuracy and Spatial Resolution , 1979 .

[42]  Jidong Gao,et al.  A Three-Dimensional Variational Data Analysis Method with Recursive Filter for Doppler Radars , 2004 .

[43]  Pavlos Kollias,et al.  Investigation of observational error sources in multi-Doppler-radar three-dimensional variational vertical air motion retrievals , 2019, Atmospheric Measurement Techniques.

[44]  Jidong Gao,et al.  A Variational Method for the Analysis of Three-Dimensional Wind Fields from Two Doppler Radars , 1999 .

[45]  Anna del Moral,et al.  Connecting flash flood events with radar-derived convective storm characteristics on the northwestern Mediterranean coast: knowing the present for better future scenarios adaptation , 2020 .

[46]  M. Bell,et al.  Thermodynamic Retrieval in Rapidly Rotating Vortices from Multiple-Doppler Radar Data , 2017 .

[47]  Anna del Moral,et al.  A radar-based centroid tracking algorithm for severe weather surveillance: identifying split/merge processes in convective systems , 2018, Atmospheric Research.

[48]  L. Armijo,et al.  A Theory for the Determination of Wind and Precipitation Velocities with Doppler Radars. , 1969 .

[49]  Yu-Chieng Liou,et al.  A Variational Multiple–Doppler Radar Three-Dimensional Wind Synthesis Method and Its Impacts on Thermodynamic Retrieval , 2009 .

[50]  Richard L. Thompson,et al.  Predicting Supercell Motion Using a New Hodograph Technique , 2000 .

[51]  Tomeu Rigo,et al.  Quality Control of Antenna Alignment and Receiver Calibration Using the Sun: Adaptation to Midrange Weather Radar Observations at Low Elevation Angles , 2015 .

[52]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[54]  Morris L. Weisman,et al.  The Use of Vertical Wind Shear versus Helicity in Interpreting Supercell Dynamics , 2000 .

[55]  Brenda Dolan,et al.  An integrated display and analysis methodology for multivariable radar data , 2005 .

[56]  S. Stefan,et al.  Analysis of Convective Thunderstorm Split Cells in South-Eastern Romania , 2013 .

[57]  Tomeu Rigo,et al.  Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing , 2017 .

[58]  Katsuyuki V. Ooyama,et al.  The Cubic-Spline Transform Method: Basic Definitions and Tests in a 1D Single Domain , 2002 .

[59]  Harri Hohti,et al.  Climatology of Severe Hail in Finland: 1930–2006 , 2009 .

[60]  Juanzhen Sun,et al.  An Application of the Immersed Boundary Method for Recovering the Three-Dimensional Wind Fields over Complex Terrain Using Multiple-Doppler Radar Data , 2012 .