Cancer stem cells in sarcomas: Getting to the stemness core.

[1]  Daniel J. Devine,et al.  Hedgehog Pathway Drives Fusion-Negative Rhabdomyosarcoma Initiated From Non-myogenic Endothelial Progenitors. , 2018, Cancer cell.

[2]  Yan Wang,et al.  Evidence for Kaposi Sarcoma Originating from Mesenchymal Stem Cell through KSHV-induced Mesenchymal-to-Endothelial Transition. , 2018, Cancer research.

[3]  MeiYun Tan,et al.  LncRNA SOX2‐OT is a novel prognostic biomarker for osteosarcoma patients and regulates osteosarcoma cells proliferation and motility through modulating SOX2 , 2017, IUBMB life.

[4]  Lisa E. S. Crose,et al.  A Novel Notch–YAP Circuit Drives Stemness and Tumorigenesis in Embryonal Rhabdomyosarcoma , 2017, Molecular Cancer Research.

[5]  Yu Liang,et al.  SOX2 Is a Marker for Stem-like Tumor Cells in Bladder Cancer , 2017, Stem cell reports.

[6]  A. Rizzino,et al.  The dark side of SOX2: cancer - a comprehensive overview , 2017, Oncotarget.

[7]  T. Nielsen,et al.  Advances in sarcoma diagnostics and treatment , 2016, Oncotarget.

[8]  Angel G. Martín,et al.  Linking Pluripotency Reprogramming and Cancer , 2016, Stem cells translational medicine.

[9]  Y. Oda,et al.  Identification and analysis of CXCR4-positive synovial sarcoma-initiating cells , 2016, Oncogene.

[10]  J. García-Castro,et al.  Aldh1 Expression and Activity Increase During Tumor Evolution in Sarcoma Cancer Stem Cell Populations , 2016, Scientific Reports.

[11]  A. Abarrategi,et al.  Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies , 2016, Stem cells international.

[12]  C. Bult,et al.  Current state of pediatric sarcoma biology and opportunities for future discovery: A report from the sarcoma translational research workshop. , 2016, Cancer genetics.

[13]  Anne-Marie Cleton-Jansen,et al.  Osteosarcoma Stem Cells Have Active Wnt/β‐catenin and Overexpress SOX2 and KLF4 , 2016, Journal of cellular physiology.

[14]  Wei Guo,et al.  Inhibition of SOX2 induces cell apoptosis and G1/S arrest in Ewing’s sarcoma through the PI3K/Akt pathway , 2016, Journal of Experimental & Clinical Cancer Research.

[15]  A. Cleton-Jansen,et al.  Chemotherapy induces stemness in osteosarcoma cells through activation of Wnt/β-catenin signaling. , 2016, Cancer letters.

[16]  M. Hermanová,et al.  Cancer stem cell markers in pediatric sarcomas: Sox2 is associated with tumorigenicity in immunodeficient mice , 2016, Tumor Biology.

[17]  Kaori Tanaka,et al.  Aldehyde dehydrogenase 1A1 in stem cells and cancer , 2016, Oncotarget.

[18]  D. Montaner,et al.  Brief Report: Inhibition of miR‐145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells , 2015, Stem cells.

[19]  M. Hermanová,et al.  Expression of nestin, CD133 and ABCG2 in relation to the clinical outcome in pediatric sarcomas. , 2016, Cancer biomarkers : section A of Disease markers.

[20]  J. Neradil,et al.  Nestin as a marker of cancer stem cells , 2015, Cancer science.

[21]  A. Hampl,et al.  Atypical nuclear localization of CD133 plasma membrane glycoprotein in rhabdomyosarcoma cell lines , 2015, International journal of molecular medicine.

[22]  T. Oue,et al.  Aldehyde Dehydrogenase 1 (ALDH1) Is a Potential Marker for Cancer Stem Cells in Embryonal Rhabdomyosarcoma , 2015, PloS one.

[23]  Meng-Lei Ding,et al.  mTORC1 Maintains the Tumorigenicity of SSEA-4+ High-Grade Osteosarcoma , 2015, Scientific Reports.

[24]  D. Placantonakis,et al.  Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells , 2015, Nature Communications.

[25]  A. Dubrovska,et al.  A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. , 2015, Seminars in cancer biology.

[26]  U. Dirksen,et al.  Anchorage-independent growth of Ewing sarcoma cells under serum-free conditions is not associated with stem-cell like phenotype and function. , 2014, Oncology reports.

[27]  R. Weinberg,et al.  Tackling the cancer stem cells — what challenges do they pose? , 2014, Nature Reviews Drug Discovery.

[28]  R. Khokha,et al.  High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures , 2014, Cancer medicine.

[29]  S. Geng,et al.  miR-126 Functions as a Tumor Suppressor in Osteosarcoma by Targeting Sox2 , 2013, International journal of molecular sciences.

[30]  G. Crabtree,et al.  Reversible Disruption of mSWI/SNF (BAF) Complexes by the SS18-SSX Oncogenic Fusion in Synovial Sarcoma , 2013, Cell.

[31]  M. Krook,et al.  LGR5 is Expressed by Ewing Sarcoma and Potentiates Wnt/β-Catenin Signaling , 2013, Front. Oncol..

[32]  D. Corbeil,et al.  CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges , 2013, The Journal of pathology.

[33]  G. Gillespie,et al.  CD133 marks a myogenically primitive subpopulation in rhabdomyosarcoma cell lines that are relatively chemoresistant but sensitive to mutant HSV , 2013, Pediatric blood & cancer.

[34]  Qiaojun He,et al.  Human osteosarcoma CD49f−CD133+ cells: impaired in osteogenic fate while gain of tumorigenicity , 2012, Oncogene.

[35]  K. Nagashima,et al.  Correction: Identification of CBX3 and ABCA5 as Putative Biomarkers for Tumor Stem Cells in Osteosarcoma , 2012, PLoS ONE.

[36]  Markus Absenger,et al.  Aldehyde Dehydrogenase 1, a Potential Marker for Cancer Stem Cells in Human Sarcoma , 2012, PloS one.

[37]  C. Denny,et al.  Pediatric sarcomas: translating molecular pathogenesis of disease to novel therapeutic possibilities , 2012, Pediatric Research.

[38]  M. Hermanová,et al.  Nestin expression in high-grade osteosarcomas and its clinical significance. , 2012, Oncology reports.

[39]  P. Menéndez,et al.  Modeling sarcomagenesis using multipotent mesenchymal stem cells , 2011, Cell Research.

[40]  S. Orkin,et al.  Sox2 maintains self-renewal of tumor initiating cells in osteosarcomas , 2011, Oncogene.

[41]  J. Neradil,et al.  Detection of cancer stem cell markers in sarcomas. , 2012, Klinicka onkologie : casopis Ceske a Slovenske onkologicke spolecnosti.

[42]  M. Hermanová,et al.  CD133 Expression and Identification of CD133/nestin Positive Cells in Rhabdomyosarcomas and Rhabdomyosarcoma Cell Lines , 2011, Analytical cellular pathology.

[43]  Zhuojing Luo,et al.  Side population cells isolated from human osteosarcoma are enriched with tumor‐initiating cells , 2011, Cancer science.

[44]  F. Papaccio,et al.  Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[45]  H. Moch,et al.  CD133 Positive Embryonal Rhabdomyosarcoma Stem-Like Cell Population Is Enriched in Rhabdospheres , 2011, PloS one.

[46]  D. Strunk,et al.  Hsa-mir-145 is the top EWS-FLI1-repressed microRNA involved in a positive feedback loop in Ewing's sarcoma , 2011, Oncogene.

[47]  Benjamin R Arenkiel,et al.  Evidence for an unanticipated relationship between undifferentiated pleomorphic sarcoma and embryonal rhabdomyosarcoma. , 2011, Cancer cell.

[48]  Chia-Ying Lin,et al.  Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99‐1 cells based on high aldehyde dehydrogenase activity , 2011, International journal of cancer.

[49]  J. Yustein,et al.  High ALDH Activity Identifies Chemotherapy-Resistant Ewing's Sarcoma Stem Cells That Retain Sensitivity to EWS-FLI1 Inhibition , 2010, PloS one.

[50]  J. Wahl,et al.  Ewing's sarcoma cells with CD57‐associated increase of tumorigenicity and with neural crest‐like differentiation capacity , 2010, International journal of cancer.

[51]  Toshio Mori,et al.  Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. , 2010, Oncology reports.

[52]  N. Agarwal,et al.  CD117 and Stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance. , 2010, Cancer research.

[53]  Nicolò Riggi,et al.  EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. , 2010, Genes & development.

[54]  T. Triche,et al.  CD133 expression in chemo-resistant Ewing sarcoma cells , 2010, BMC Cancer.

[55]  H. Sasaki,et al.  Tumour formation by single fibroblast growth factor receptor 3-positive rhabdomyosarcoma-initiating cells , 2009, British Journal of Cancer.

[56]  Nicolò Riggi,et al.  Identification of cancer stem cells in Ewing's sarcoma. , 2009, Cancer research.

[57]  C. Cavaliere,et al.  Correction: Detection and Characterization of CD133+ Cancer Stem Cells in Human Solid Tumours , 2008, PLoS ONE.

[58]  M. Hermanová,et al.  Nestin expression in osteosarcomas and derivation of nestin/CD133 positive osteosarcoma cell lines , 2008, BMC Cancer.