SPECTROSCOPY OF THE INNER COMPANION OF THE PULSAR PSR J0337+1715

The hierarchical triple system PSR J0337+1715 offers an unprecedented laboratory to study secular evolution of interacting systems and to explore the complicated mass-transfer history that forms millisecond pulsars and helium-core white dwarfs. The latter in particular, however, requires knowledge of the properties of the individual components of the system. Here we present precise optical spectroscopy of the inner companion in the PSR J0337+1715 system. We confirm it as a hot, low-gravity DA white dwarf with Teff = 15, 800 ± 100 K and log10(g) = 5.82  ±  0.05. We also measure an inner mass ratio of 0.1364 ± 0.0015, entirely consistent with that inferred from pulsar timing, and a systemic radial velocity of 29.7 ± 0.3 km s−1. Combined with the mass (0.19751 M☉) determined from pulsar timing, our measurement of the surface gravity implies a radius of 0.091 ± 0.005 R☉; combined further with the effective temperature and extinction, the photometry implies a distance of 1300 ± 80 pc. The high temperature of the companion is somewhat puzzling: with current models, it likely requires a recent period of unstable hydrogen burning, and suggests a surprisingly short lifetime for objects at this phase in their evolution. We discuss the implications of these measurements in the context of understanding the PSR J0337+1715 system, as well as of low-mass white dwarfs in general.

[1]  T. Tauris,et al.  FORMATION OF THE GALACTIC MILLISECOND PULSAR TRIPLE SYSTEM PSR J0337+1715—A NEUTRON STAR WITH TWO ORBITING WHITE DWARFS , 2014, 1401.0941.

[2]  R. Lynch,et al.  A millisecond pulsar in a stellar triple system , 2014, Nature.

[3]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[4]  L. Althaus,et al.  New evolutionary sequences for extremely low-mass white dwarfs - Homogeneous mass and age determinations and asteroseismic prospects , 2013, 1307.1882.

[5]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[6]  Warren R. Brown,et al.  THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES , 2013, 1304.4248.

[7]  U. Toronto,et al.  A METAL-RICH LOW-GRAVITY COMPANION TO A MASSIVE MILLISECOND PULSAR , 2013, 1302.2492.

[8]  P. Jakobsson,et al.  A NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS , 2013, 1302.2352.

[9]  C. Baltay,et al.  Atmospheric extinction properties above Mauna Kea from the Nearby SuperNova Factory spectro-photometric data set , 2012, 1210.2619.

[10]  Kevin Stovall,et al.  THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY II: DATA ANALYSIS AND THE TIMING OF 10 NEW PULSARS, INCLUDING A RELATIVISTIC BINARY , 2012, 1209.4296.

[11]  R. Lynch,et al.  THE GREEN BANK TELESCOPE 350 MHz DRIFT-SCAN SURVEY. I. SURVEY OBSERVATIONS AND THE DISCOVERY OF 13 PULSARS , 2012, 1209.4293.

[12]  D. Kaplan,et al.  ORBITAL EVOLUTION OF COMPACT WHITE DWARF BINARIES , 2012, 1208.6320.

[13]  M. Kramer,et al.  Formation of millisecond pulsars with CO white dwarf companions – II. Accretion, spin-up, true ages and comparison to MSPs with He white dwarf companions , 2012, 1206.1862.

[14]  J. Farihi,et al.  The chemical diversity of exo-terrestrial planetary debris around white dwarfs , 2012, 1205.0167.

[15]  P. Freire,et al.  The relativistic pulsar-white dwarf binary PSR J1738+0333 I. Mass determination and evolutionary history , 2012, 1204.3948.

[16]  Warren R. Brown,et al.  THE ELM SURVEY. IV. 24 WHITE DWARF MERGER SYSTEMS , 2012, 1204.0028.

[17]  A. Córsico,et al.  Evolutionary and pulsational properties of white dwarf stars , 2010, 1007.2659.

[18]  P. Bergeron,et al.  SPECTROSCOPIC ANALYSIS OF DA WHITE DWARFS: STARK BROADENING OF HYDROGEN LINES INCLUDING NONIDEAL EFFECTS , 2009, 0902.4182.

[19]  L. Althaus,et al.  Full evolution of low-mass white dwarfs with helium and oxygen cores , 2007 .

[20]  P. Ventura,et al.  Modeling the Closest Double Degenerate System RX J0806.3+1527 and Its Decreasing Period , 2006, astro-ph/0606577.

[21]  I. Stairs,et al.  Binary radio pulsars , 2005 .

[22]  A. Dotter,et al.  The White Dwarf Cooling Sequence of NGC 6397 , 2005, astro-ph/0701738.

[23]  Ralph C. Bohlin,et al.  Absolute Flux Distribution of the SDSS Standard BD +17°4708 , 2004 .

[24]  P. Jonker,et al.  Optical Studies of Companions to Millisecond Pulsars , 2004, astro-ph/0405283.

[25]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[26]  G. Nelemans,et al.  Mass transfer between double white dwarfs , 2003, astro-ph/0312577.

[27]  L. Bildsten,et al.  White Dwarf Donors in Ultracompact Binaries: The Stellar Structure of Finite-Entropy Objects , 2003, astro-ph/0308233.

[28]  Steven M. Beard,et al.  Gemini-North Multiobject Spectrograph Stability Performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[29]  A. Serenelli,et al.  Evolution and colours of helium-core white dwarf stars: the case of low-metallicity progenitors , 2002, astro-ph/0208408.

[30]  A. Serenelli,et al.  Diffusion and the occurrence of hydrogen‐shell flashes in helium white dwarf stars , 2000, astro-ph/0012545.

[31]  P. Bergeron,et al.  The Masses of the Millisecond Pulsar J1012+5307 and Its White Dwarf Companion , 1996, astro-ph/9606045.

[32]  O. Pols,et al.  Age of a millisecond binary pulsar , 1996, Nature.

[33]  Lorimer,et al.  Birth rate of millisecond pulsars , 1995, Nature.

[34]  V. Dhillon,et al.  Low-mass white dwarfs need friends: five new double-degenerate close binary stars , 1995 .

[35]  M. Livio,et al.  COMMON ENVELOPES IN BINARY STAR EVOLUTION , 1993 .

[36]  G. Walker,et al.  Interdependence of the 4430 Angstrom Diffuse Interstellar Band, Polarization, and Ultraviolet Extinction , 1987 .

[37]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[38]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .