Constant-Work-Space Algorithm for a Shortest Path in a Simple Polygon

We present two space-efficient algorithms. First, we show how to report a simple path between two arbitrary nodes in a given tree. Using a technique called “computing instead of storing”, we can design a naive quadratic-time algorithm for the problem using only constant work space, i.e., O(logn) bits in total for the work space, where n is the number of nodes in the tree. Then, another technique “controlled recursion” improves the time bound to O(n1+e) for any positive constant e. Second, we describe how to compute a shortest path between two points in a simple n-gon. Although the shortest path problem in general graphs is NL-complete, this constrained problem can be solved in quadratic time using only constant work space.

[1]  Andreas Jakoby,et al.  Logspace Algorithms for Computing Shortest and Longest Paths in Series-Parallel Graphs , 2007, FSTTCS.

[2]  C. M. Gold,et al.  Automated contour mapping using triangular element data structures and an interpolant over each irregular triangular domain , 1977, SIGGRAPH '77.

[3]  Ray A. Jarvis,et al.  On the Identification of the Convex Hull of a Finite Set of Points in the Plane , 1973, Inf. Process. Lett..

[4]  L. Paul Chew,et al.  Constrained Delaunay triangulations , 1987, SCG '87.

[5]  David Avis,et al.  A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1991, SCG '91.

[6]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[7]  Tobias Lenz Deterministic Splitter Finding in a Stream with Constant Storage and Guarantees , 2006, ISAAC.

[8]  Asano Tetsuo Constant-Working-Space Image Scan with a Given Angle , 2008, EUROCG 2008.

[9]  G. Unter Rote Degenerate Convex Hulls in High Dimensions Without Extra Storage , 1992 .

[10]  Günter Rote,et al.  Constant-Working-Space Algorithms for Geometric Problems , 2009, CCCG.

[11]  Kurt Mehlhorn,et al.  A platform for combinatorial and geometric computing , 1995 .

[12]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[13]  Yajun Wang,et al.  Constant-Work-Space Algorithms for Shortest Paths in Trees and Simple Polygons , 2011, J. Graph Algorithms Appl..

[14]  Timothy M. Chan,et al.  Multi-Pass Geometric Algorithms , 2005, Discret. Comput. Geom..

[15]  Venkatesh Raman,et al.  Selection from Read-Only Memory and Sorting with Minimum Data Movement , 1996, Theor. Comput. Sci..

[16]  Mark de Berg,et al.  Simple traversal of a subdivision without extra storage , 1996, SCG '96.

[17]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[18]  Prosenjit Bose,et al.  An Improved Algorithm for Subdivision Traversal without Extra Storage , 2002, Int. J. Comput. Geom. Appl..

[19]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[20]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[21]  Omer Reingold,et al.  Undirected connectivity in log-space , 2008, JACM.

[22]  Christopher M. Gold,et al.  Spatially ordered networks and topographic reconstructions , 1987, Int. J. Geogr. Inf. Sci..

[23]  Tobias Lenz Simple reconstruction of non-simple curves and approximating the median in streams with constant storage , 2008 .

[24]  Tetsuo Asano Constant-Working-Space Algorithms: How Fast Can We Solve Problems without Using Any Extra Array? , 2008, ISAAC.

[25]  Prosenjit Bose,et al.  Online Routing in Triangulations , 1999, SIAM J. Comput..

[26]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[27]  D. T. Lee,et al.  Euclidean shortest paths in the presence of rectilinear barriers , 1984, Networks.

[28]  Tetsuo Asano Constant-Working-Space Algorithms for Image Processing , 2008, ETVC.

[29]  Tetsuo Asano Constant-Work-Space Image Scan with a Given Angle , 2011 .

[30]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .