Comparison of Statistical and Shape-Based Approaches for Non-rigid Motion Tracking with Missing Data Using a Particle Filter
暂无分享,去创建一个
[1] Freda Kemp,et al. An Introduction to Sequential Monte Carlo Methods , 2003 .
[2] Jinbo Bi,et al. Regression Error Characteristic Curves , 2003, ICML.
[3] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[4] Michael Isard,et al. Learning and Classification of Complex Dynamics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[5] Nando de Freitas,et al. An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.
[6] H. W. Sorenson,et al. Kalman filtering : theory and application , 1985 .
[7] A. Doucet. On sequential Monte Carlo methods for Bayesian filtering , 1998 .
[8] Jun S. Liu,et al. Blind Deconvolution via Sequential Imputations , 1995 .
[9] Michael Isard,et al. CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.
[10] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[11] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[12] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[13] Michael Isard,et al. Active Contours , 2000, Springer London.