TheO(n3) algorithm for a special case of the maximum cost-to-time ratio cycle problem and its coherence with an eigenproblem of a matrix
暂无分享,去创建一个
AbstractLet twon×n matrices be given, namely a real matrixA=(aij) and a (0, 1)-matrixT=(tij). For a cyclic permutationσ=(i1,i2,...,ik) of a subset of N={1, 2, ..., n} we define μA;T(σ), the cost-to-time ratio weight ofσ, as
$$(a_{i_1 i_2 } + \cdots + a_{i_k i_1 } )/(t_{i_1 i_2 } + \cdots + t_{i_k i_1 } )$$
. This paper presents an O(n3) algorithm for finding λ(A;T)=maxσ μA;T(σ), the maximum cost-to-time ratio weight of the matricesA andT. Moreover a generalised eigenproblem is proposed.
[1] G. Dantzig,et al. FINDING A CYCLE IN A GRAPH WITH MINIMUM COST TO TIME RATIO WITH APPLICATION TO A SHIP ROUTING PROBLEM , 1966 .
[2] Richard M. Karp,et al. A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..
[3] G. Schulz. Noltemeier, H., Graphentheorie mit Algorithmen und Anwendungen. Berlin-New York. Walter de Gruyter. 1976. 239 S., DM 48,- . , 1977 .