Investigating Metaphorical Language in Sentiment Analysis: A Sense-to-Sentiment Perspective

Intuition dictates that figurative language and especially metaphorical expressions should convey sentiment. It is the aim of this work to validate this intuition by showing that figurative language (metaphors) appearing in a sentence drive the polarity of that sentence. Towards this target, the current article proposes an approach for sentiment analysis of sentences where figurative language plays a dominant role. This approach applies Word Sense Disambiguation aiming to assign polarity to word senses rather than tokens. Sentence polarity is determined using the individual polarities for metaphorical senses as well as other contextual information. Experimental evaluation shows that the proposed method achieves high scores in comparison with other state-of-the-art approaches tested on the same corpora. Finally, experimental results provide supportive evidence that this method is also well suited for corpora consisting of literal and figurative language sentences.

[1]  George A. Vouros,et al.  MUDOS-NG: Multi-document Summaries Using N-gram Graphs (Tech Report) , 2010, ArXiv.

[2]  Ted Pedersen,et al.  WordNet::SenseRelate::AllWords - A Broad Coverage Word Sense Tagger that Maximizes Semantic Relatedness , 2009, NAACL.

[3]  Sabine Bergler,et al.  When Specialists and Generalists Work Together: Overcoming Domain Dependence in Sentiment Tagging , 2008, ACL.

[4]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[5]  Bo Pang,et al.  Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales , 2005, ACL.

[6]  Rodrigo Agerri,et al.  Affect Transfer by Metaphor for an Intelligent Conversational Agent , 2011 .

[7]  Yi Mao,et al.  Isotonic Conditional Random Fields and Local Sentiment Flow , 2006, NIPS.

[8]  D. Gentner Structure‐Mapping: A Theoretical Framework for Analogy* , 1983 .

[9]  Reynaldo Gil-García,et al.  Extended Star Clustering Algorithm , 2003, CIARP.

[10]  Cornelia Müller,et al.  Metaphors Dead and Alive, Sleeping and Waking: A Dynamic View , 2008 .

[11]  George A. Miller,et al.  Using Corpus Statistics and WordNet Relations for Sense Identification , 1998, CL.

[12]  George A. Vouros,et al.  Sentiment Analysis of Figurative Language using a Word Sense Disambiguation Approach , 2009, RANLP.

[13]  Annie Zaenen,et al.  Contextual Valence Shifters , 2006, Computing Attitude and Affect in Text.

[14]  Li Zhang,et al.  Exploration of Affect Sensing from Speech and Metaphorical Text , 2009, Edutainment.

[15]  G. Bower,et al.  Cognitive perspectives on emotion and motivation , 1988 .

[16]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[17]  Andrés Montoyo,et al.  Opinion Polarity Detection - Using Word Sense Disambiguation to Determine the Polarity of Opinions , 2010, ICAART.

[18]  Ted Pedersen,et al.  Maximizing Semantic Relatedness to Perform Word Sense Disambiguation , 2005 .

[19]  Trevor Darrell,et al.  Conditional Random Fields for Object Recognition , 2004, NIPS.

[20]  Bruno Pouliquen,et al.  Sentiment Analysis in the News , 2010, LREC.

[21]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[22]  Maria Simi,et al.  Blog Mining Through Opinionated Words , 2006, TREC.

[23]  Mike Wells,et al.  Structured Models for Fine-to-Coarse Sentiment Analysis , 2007, ACL.

[24]  G. Fauconnier,et al.  Rethinking Metaphor , 2008 .

[25]  G. Fauconnier,et al.  The Cambridge Handbook of Metaphor and Thought: Rethinking metaphor , 2008 .

[26]  M. A. R T H A P A L,et al.  Making fine-grained and coarse-grained sense distinctions , both manually and automatically , 2005 .

[27]  George A. Vouros,et al.  Summarization system evaluation revisited: N-gram graphs , 2008, TSLP.

[28]  G. Lakoff,et al.  Metaphors We Live by , 1982 .

[29]  Tony Veale A Non-Distributional Approach to Polysemy Detection in WordNet , .

[30]  G. Lakoff,et al.  Metaphors We Live By , 1980 .

[31]  A. Ortony,et al.  Metaphorical Uses of Language in the Expression of Emotions , 1987 .

[32]  Timothy H. Rumbell,et al.  Affect in Metaphor : Developments with WordNet , 2008 .

[33]  Mikio Yamamoto,et al.  Sentiment Analysis Based on Probabilistic Models Using Inter-Sentence Information , 2008, LREC.

[34]  Sabine Bergler,et al.  CLaC and CLaC-NB: Knowledge-based and corpus-based approaches to sentiment tagging , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[35]  Claire Cardie,et al.  Joint Extraction of Entities and Relations for Opinion Recognition , 2006, EMNLP.

[36]  R. Jakobson Linguistics and poetics , 1960 .

[37]  Alex Acero,et al.  Hidden conditional random fields for phone classification , 2005, INTERSPEECH.

[38]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[39]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[40]  Dedre Gentner,et al.  Structure-Mapping: A Theoretical Framework for Analogy , 1983, Cogn. Sci..

[41]  Carlo Strapparava,et al.  SemEval-2007 Task 14: Affective Text , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[42]  Daisuke Ikeda,et al.  Learning to Shift the Polarity of Words for Sentiment Classification , 2008, IJCNLP.

[43]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[44]  Raymond W. Gibbs,et al.  How Context Makes Metaphor Comprehension Seem 'Special' , 1989 .

[45]  Hong Yu,et al.  Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences , 2003, EMNLP.

[46]  Christiane Fellbaum,et al.  Making fine-grained and coarse-grained sense distinctions, both manually and automatically , 2006, Natural Language Engineering.

[47]  Ellen Riloff,et al.  Learning Extraction Patterns for Subjective Expressions , 2003, EMNLP.

[48]  A. Ortony,et al.  The psychological foundations of the affective lexicon. , 1987 .

[49]  R. Gibbs,et al.  MIP: A method for identifying metaphorically used words in discourse , 2007 .