Peering into the formation history of β Pictoris b with VLTI/GRAVITY long-baseline interferometry
暂无分享,去创建一个
S. Rabien | T. Paumard | L. Jocou | R. Abuter | K. Perraut | G. Duvert | A. Amorim | A. Eckart | G. Rousset | R. Genzel | E. Wieprecht | H. Bonnet | P. Kervella | S. Gillessen | L. Pueyo | T. Henning | S. Scheithauer | G. Perrin | C. Straubmeier | Z. Hubert | J. Woillez | F. Haussmann | A.-M. Lagrange | S. Yazici | M. Bonnefoy | A.-L. Maire | F. Cantalloube | P. Lena | M. Nowak | F. Eisenhauer | R. Dembet | J. Dexter | G. Rodriguez-Coira | F. Widmann | E. Wiezorrek | F. Chapron | E. Gendron | A. Buron | W. Brandner | Y. Clenet | C. Paladini | O. Pfuhl | T. Ott | E. Sturm | V. Lapeyrere | O. Straub | C. Collin | S. Lacour | H. Beust | L. J. Tacconi | E. F. van Dishoeck | J. P. Berger | D. Ziegler | J.-B. Le Bouquin | N. M. Forster Schreiber | V. Coude du Foresto | P. T. de Zeeuw | F. Gao | F. Vincent | C. Rau | J. Shangguan | P. Molliere | S. Hippler | B. Charnay | R. Garcia Lopez | GRAVITY Collaboration | J. Wang | P. F'edou
[1] J. Szulágyi,et al. Post-conjunction detection of β Pictoris b with VLT/SPHERE , 2018, Astronomy & Astrophysics.
[2] C. Mordasini,et al. Characterization of exoplanets from their formation III: The statistics of planetary luminosities , 2017, 1708.00868.
[3] Gautam Vasisht,et al. THE ORBIT AND TRANSIT PROSPECTS FOR β PICTORIS b CONSTRAINED WITH ONE MILLIARCSECOND ASTROMETRY , 2016, 1607.05272.
[4] D. Saumon,et al. Retrieval of atmospheric properties of cloudy L dwarfs , 2017, 1701.01257.
[5] Edwin A. Bergin,et al. THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.
[6] Nikku Madhusudhan,et al. Atmospheric signatures of giant exoplanet formation by pebble accretion , 2016, 1611.03083.
[7] P. Bodenheimer,et al. Calculations of the evolution of the giant planets , 1980 .
[8] M. Asplund,et al. New light on stellar abundance analyses: Departures from LTE and homogeneity. , 2005 .
[9] A. Vigan,et al. Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE , 2017, 1704.02987.
[10] T. Henning,et al. petitRADTRANS: a Python radiative transfer package for exoplanet characterization and retrieval. , 2019, 1904.11504.
[11] M. Marley,et al. On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.
[12] Tokyo Institute of Technology,et al. The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime , 2015, 1507.08544.
[13] Julien H. Girard,et al. The near-infrared spectral energy distribution of β Pictoris b , 2013, 1302.1160.
[14] Anthony Boccaletti,et al. A Self-consistent Cloud Model for Brown Dwarfs and Young Giant Exoplanets: Comparison with Photometric and Spectroscopic Observations , 2017, 1711.11483.
[15] R. Pudritz,et al. Composition of early planetary atmospheres – I. Connecting disc astrochemistry to the formation of planetary atmospheres , 2016, 1605.09407.
[16] D. Saumon,et al. WATER CLOUDS IN Y DWARFS AND EXOPLANETS , 2014, 1404.0005.
[17] H. Beust,et al. Falling evaporating bodies in the β Pictoris system - Resonance refilling and long term duration of the phenomenon , 2001 .
[18] Timothy D. Brandt,et al. A Model-independent Mass and Moderate Eccentricity for β Pic b , 2018, Astrophysical Journal.
[19] Yann Alibert,et al. From stellar nebula to planets: The refractory components , 2013, 1312.3085.
[20] C. Helling,et al. Dust in brown dwarfs. V. Growth and evaporation of dirty dust grains , 2006 .
[21] Peter Bodenheimer,et al. Calculations of the early evolution of Jupiter , 1974 .
[22] Lunar,et al. 1–2.4 μm Near-IR Spectrum of the Giant Planet β Pictoris b Obtained with the Gemini Planet Imager , 2017, 1703.00011.
[23] Andrew Serio,et al. THE FIRST H-BAND SPECTRUM OF THE GIANT PLANET β PICTORIS b , 2014, 1407.4469.
[24] J. Lunine,et al. CARBON-RICH PLANET FORMATION IN A SOLAR COMPOSITION DISK , 2014, 1402.5182.
[25] P. H. Hauschildt,et al. Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .
[26] Jason J. Wang,et al. β PICTORIS’ INNER DISK IN POLARIZED LIGHT AND NEW ORBITAL PARAMETERS FOR β PICTORIS b , 2015, 1508.04787.
[27] R. Garrison,et al. Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 parsecs: The Southern Sample , 2006, astro-ph/0603770.
[28] E. Tatulli,et al. AMBER : Instrument description and first astrophysical results Special feature Interferometric data reduction with AMBER / VLTI . Principle , estimators , and illustration , 2007 .
[29] Ravit Helled,et al. Planetesimal capture in the disk instability model , 2006 .
[30] Willy Benz,et al. From planetesimals to planets: volatile molecules , 2014, 1407.7282.
[31] Michael C. Liu,et al. Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs. II. Properties of 11 T dwarfs , 2016, 1612.02809.
[32] S. Seager,et al. A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.
[33] Christoph Mordasini,et al. THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS , 2016, 1609.03019.
[34] Anthony G. A. Brown,et al. The mass of the young planet Beta Pictoris b through the astrometric motion of its host star , 2018, Nature Astronomy.
[35] A. Burrows,et al. THE DEUTERIUM-BURNING MASS LIMIT FOR BROWN DWARFS AND GIANT PLANETS , 2010, 1008.5150.
[36] Flavien Kiefer,et al. Evidence for an additional planet in the β Pictoris system , 2019, Nature Astronomy.
[37] W. Benz,et al. From stellar nebula to planetesimals , 2014, 1407.7271.
[38] Dmitry Savransky,et al. Dynamical Constraints on the HR 8799 Planets with GPI , 2018, The Astronomical Journal.
[39] U. Exeter,et al. A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood , 2015, 1508.05955.
[40] A. Boccaletti,et al. Orbital characterization of the β Pictoris b giant planet , 2012, 1202.2655.
[41] L. Testi,et al. A STEEPER THAN LINEAR DISK MASS–STELLAR MASS SCALING RELATION , 2016, 1608.03621.
[42] Nikku Madhusudhan,et al. TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION , 2014, 1408.3668.
[43] Bernhard R. Brandl,et al. Fast spin of the young extrasolar planet β Pictoris b , 2014, Nature.
[44] Bruce A. Macintosh,et al. Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet Atmosphere , 2013, Science.
[45] Bernhard Brandl,et al. The fast spin-rotation of a young extra-solar planet , 2014 .
[46] P. Kervella,et al. Stellar and substellar companions of nearby stars from Gaia DR2 , 2018, Astronomy & Astrophysics.
[47] T. Henning,et al. MODEL ATMOSPHERES OF IRRADIATED EXOPLANETS: THE INFLUENCE OF STELLAR PARAMETERS, METALLICITY, AND THE C/O RATIO , 2015, 1509.07523.
[48] R. Abuter,et al. The GRAVITY fringe tracker , 2019, Astronomy & Astrophysics.
[49] R. Galicher,et al. Physical and orbital properties of β Pictoris b , 2014, 1407.4001.
[50] J. Patience,et al. A Uniform Retrieval Analysis of Ultra-cool Dwarfs. III. Properties of Y Dwarfs , 2019, The Astrophysical Journal.
[51] F. Feroz,et al. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.
[52] Armando Riccardi,et al. MAGELLAN ADAPTIVE OPTICS FIRST-LIGHT OBSERVATIONS OF THE EXOPLANET β PIC b. II. 3–5 μm DIRECT IMAGING WITH MagAO+Clio, AND THE EMPIRICAL BOLOMETRIC LUMINOSITY OF A SELF-LUMINOUS GIANT PLANET , 2015, 1511.02894.
[53] I. Kamp,et al. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets , 2014, Life.
[54] Royal Observatory of Edinburgh,et al. Consistent Simulations of Substellar Atmospheres and Nonequilibrium Dust Cloud Formation , 2008, 0801.3733.
[55] I. A. G. Snellen,et al. Detecting isotopologues in exoplanet atmospheres using ground-based high-dispersion spectroscopy , 2018, Astronomy & Astrophysics.
[56] F. Allard,et al. Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000 .
[57] P. Lagage,et al. Toward the Analysis of JWST Exoplanet Spectra: Identifying Troublesome Model Parameters , 2017, 1710.08235.
[58] Catherine Walsh,et al. Setting the volatile composition of (exo)planet-building material. Does chemical evolution in disk midplanes matter? , 2016, 1607.06710.
[59] S. Rabien,et al. First direct detection of an exoplanet by optical interferometry , 2019, Astronomy & Astrophysics.
[60] S. Heap,et al. HST/GHRS Observations of the β Pictoris System: Basic Parameters and the Age of the System , 1995 .
[61] David R. Alexander,et al. THE LIMITING EFFECTS OF DUST IN BROWN DWARF MODEL ATMOSPHERES , 2001 .
[62] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[63] P. Bouchet,et al. Infrared aperture photometry at ESO (1983-1994) and its future use. , 1996 .
[64] Andreas Quirrenbach,et al. Optical and Infrared Long–Baseline Interferometry: Application to Binary Star Science , 2001 .
[65] Pierre-Olivier Lagage,et al. Observing transiting planets with JWST. Prime targets and their synthetic spectral observations , 2016, 1611.08608.
[66] E. Bergin,et al. CHEMICAL IMAGING OF THE CO SNOW LINE IN THE HD 163296 DISK , 2015, 1510.00968.
[67] R. Helled,et al. HEAVY-ELEMENT ENRICHMENT OF A JUPITER-MASS PROTOPLANET AS A FUNCTION OF ORBITAL LOCATION , 2009, 0903.1997.
[68] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[69] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[70] M. Cushing,et al. MASSES, RADII, AND CLOUD PROPERTIES OF THE HR 8799 PLANETS , 2012, 1205.6488.
[71] S. Rabien,et al. First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.
[72] M. Bonnefoy,et al. HELIOS–RETRIEVAL: An Open-source, Nested Sampling Atmospheric Retrieval Code; Application to the HR 8799 Exoplanets and Inferred Constraints for Planet Formation , 2016, 1610.03216.
[73] C. Mordasini,et al. Deuterium burning in objects forming via the core accretion scenario - Brown dwarfs or planets? , 2012, 1210.0538.
[74] Jonathan P. Williams,et al. Submillimeter Array Observations of Disks in the SR 24 Multiple Star System , 2004, astro-ph/0411131.
[75] Timothy D. Brandt. The Hipparcos–Gaia Catalog of Accelerations , 2018, The Astrophysical Journal Supplement Series.
[76] S. Rabien,et al. Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA* , 2018, Astronomy & Astrophysics.
[77] F. V. Leeuwen. Validation of the new Hipparcos reduction , 2007, 0708.1752.
[78] Imke de Pater,et al. A low-temperature origin for the planetesimals that formed Jupiter , 1999, Nature.
[79] Jonathan P. Williams,et al. An ALMA Survey of Protoplanetary Disks in the σ Orionis Cluster , 2017, 1703.08546.
[81] Marc J. Kuchner,et al. THE GEMINI NICI PLANET-FINDING CAMPAIGN: THE ORBIT OF THE YOUNG EXOPLANET β PICTORIS b , 2014, 1403.7195.
[82] Juan Antonio Belmonte,et al. Handbook of Exoplanets , 2018 .
[83] E. Bergin,et al. EXCESS C/O AND C/H IN OUTER PROTOPLANETARY DISK GAS , 2016, 1610.07859.
[84] Catherine Walsh,et al. Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes , 2017, 1709.07863.
[85] Ravit Helled,et al. Core formation in giant gaseous protoplanets , 2008, 0808.2787.
[86] C. Helling,et al. Dust in brown dwarfs. II. The coupled problem of dust formation and sedimentation , 2003 .
[87] F. Allard,et al. The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.
[88] A. Boccaletti,et al. Interpreting the photometry and spectroscopy of directly imaged planets: a new atmospheric model applied to β Pictoris b and SPHERE observations , 2015, 1504.04876.
[89] A. Cameron,et al. Structure and evolution of isolated giant gaseous protoplanets , 1979 .
[90] M. Marley,et al. UNIFORM ATMOSPHERIC RETRIEVAL ANALYSIS OF ULTRACOOL DWARFS. I. CHARACTERIZING BENCHMARKS, Gl 570D AND HD 3651B , 2015, 1504.06670.
[91] J. Milli,et al. Full exploration of the giant planet population around β Pictoris , 2018 .
[92] A.-M. Lagrange,et al. Constraints on planets around β Pic with Harps radial velocity data , 2012, 1202.2579.
[93] F. Allard,et al. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.
[94] Jacob L. Bean,et al. A DETECTION OF WATER IN THE TRANSMISSION SPECTRUM OF THE HOT JUPITER WASP-12b AND IMPLICATIONS FOR ITS ATMOSPHERIC COMPOSITION , 2015, 1504.05586.
[95] W. C. Bowman,et al. A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.
[96] Yann Alibert,et al. New Jupiter and Saturn Formation Models Meet Observations , 2005, astro-ph/0504598.
[97] T. A. Lister,et al. Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.
[98] Francoise Delplancke,et al. Optical and Infrared Interferometry III , 2012 .
[99] F. Allard,et al. Models of very-low-mass stars, brown dwarfs and exoplanets , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[100] V. Béjar,et al. Brown Dwarfs and Free-Floating Planets in Young Stellar Clusters , 2018 .
[101] Models of Stars, Brown Dwarfs and Exoplanets , 2011 .
[102] M. Kenworthy,et al. Transiting exocomets detected in broadband light by TESS in the β Pictoris system , 2019, Astronomy & Astrophysics.
[103] J. Hansen. Multiple Scattering of Polarized Light in Planetary Atmospheres Part II. Sunlight Reflected by Terrestrial Water Clouds , 1971 .
[104] Andrew S. Ackerman,et al. Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.
[105] I. Mandel,et al. Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations , 2015, 1501.05823.
[106] M. Marley,et al. METHANE, CARBON MONOXIDE, AND AMMONIA IN BROWN DWARFS AND SELF-LUMINOUS GIANT PLANETS , 2014, 1408.6283.