Peering into the formation history of β Pictoris b with VLTI/GRAVITY long-baseline interferometry

Our objective is to estimate the C/O ratio in the atmosphere of beta Pictoris b and obtain an estimate of the dynamical mass of the planet, as well as to refine its orbital parameters using high-precision astrometry. We used the GRAVITY instrument with the four 8.2 m telescopes of the Very Large Telescope Interferometer to obtain K-band spectro-interferometric data on $\beta$ Pic b. We extracted a medium resolution (R=500) K-band spectrum of the planet and a high-precision astrometric position. We estimated the planetary C/O ratio using two different approaches (forward modeling and free retrieval) from two different codes (ExoREM and petitRADTRANS, respectively). Finally, we used a simplified model of two formation scenarios (gravitational collapse and core-accretion) to determine which can best explain the measured C/O ratio. Our new astrometry disfavors a circular orbit for $\beta$ Pic b ($e=0.15^{+0.05}_{-0.04}$). Combined with previous results and with Hipparcos/GAIA measurements, this astrometry points to a planet mass of $M = 12.7\pm{}2.2\,M_\mathrm{Jup}$. This value is compatible with the mass derived with the free-retrieval code petitRADTRANS using spectral data only. The forward modeling and free-retrieval approches yield very similar results regarding the atmosphere of beta Pic b. In particular, the C/O ratios derived with the two codes are identical ($0.43\pm{}0.05$ vs $0.43^{+0.04}_{-0.03}$). We argue that if the stellar C/O in $\beta$ Pic is Solar, then this combination of a very high mass and a low C/O ratio for the planet suggests a formation through core-accretion, with strong planetesimal enrichment.

[1]  J. Szulágyi,et al.  Post-conjunction detection of β Pictoris b with VLT/SPHERE , 2018, Astronomy & Astrophysics.

[2]  C. Mordasini,et al.  Characterization of exoplanets from their formation III: The statistics of planetary luminosities , 2017, 1708.00868.

[3]  Gautam Vasisht,et al.  THE ORBIT AND TRANSIT PROSPECTS FOR β PICTORIS b CONSTRAINED WITH ONE MILLIARCSECOND ASTROMETRY , 2016, 1607.05272.

[4]  D. Saumon,et al.  Retrieval of atmospheric properties of cloudy L dwarfs , 2017, 1701.01257.

[5]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[6]  Nikku Madhusudhan,et al.  Atmospheric signatures of giant exoplanet formation by pebble accretion , 2016, 1611.03083.

[7]  P. Bodenheimer,et al.  Calculations of the evolution of the giant planets , 1980 .

[8]  M. Asplund,et al.  New light on stellar abundance analyses: Departures from LTE and homogeneity. , 2005 .

[9]  A. Vigan,et al.  Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE , 2017, 1704.02987.

[10]  T. Henning,et al.  petitRADTRANS: a Python radiative transfer package for exoplanet characterization and retrieval. , 2019, 1904.11504.

[11]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[12]  Tokyo Institute of Technology,et al.  The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime , 2015, 1507.08544.

[13]  Julien H. Girard,et al.  The near-infrared spectral energy distribution of β Pictoris b , 2013, 1302.1160.

[14]  Anthony Boccaletti,et al.  A Self-consistent Cloud Model for Brown Dwarfs and Young Giant Exoplanets: Comparison with Photometric and Spectroscopic Observations , 2017, 1711.11483.

[15]  R. Pudritz,et al.  Composition of early planetary atmospheres – I. Connecting disc astrochemistry to the formation of planetary atmospheres , 2016, 1605.09407.

[16]  D. Saumon,et al.  WATER CLOUDS IN Y DWARFS AND EXOPLANETS , 2014, 1404.0005.

[17]  H. Beust,et al.  Falling evaporating bodies in the β Pictoris system - Resonance refilling and long term duration of the phenomenon , 2001 .

[18]  Timothy D. Brandt,et al.  A Model-independent Mass and Moderate Eccentricity for β Pic b , 2018, Astrophysical Journal.

[19]  Yann Alibert,et al.  From stellar nebula to planets: The refractory components , 2013, 1312.3085.

[20]  C. Helling,et al.  Dust in brown dwarfs. V. Growth and evaporation of dirty dust grains , 2006 .

[21]  Peter Bodenheimer,et al.  Calculations of the early evolution of Jupiter , 1974 .

[22]  Lunar,et al.  1–2.4 μm Near-IR Spectrum of the Giant Planet β Pictoris b Obtained with the Gemini Planet Imager , 2017, 1703.00011.

[23]  Andrew Serio,et al.  THE FIRST H-BAND SPECTRUM OF THE GIANT PLANET β PICTORIS b , 2014, 1407.4469.

[24]  J. Lunine,et al.  CARBON-RICH PLANET FORMATION IN A SOLAR COMPOSITION DISK , 2014, 1402.5182.

[25]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[26]  Jason J. Wang,et al.  β PICTORIS’ INNER DISK IN POLARIZED LIGHT AND NEW ORBITAL PARAMETERS FOR β PICTORIS b , 2015, 1508.04787.

[27]  R. Garrison,et al.  Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 parsecs: The Southern Sample , 2006, astro-ph/0603770.

[28]  E. Tatulli,et al.  AMBER : Instrument description and first astrophysical results Special feature Interferometric data reduction with AMBER / VLTI . Principle , estimators , and illustration , 2007 .

[29]  Ravit Helled,et al.  Planetesimal capture in the disk instability model , 2006 .

[30]  Willy Benz,et al.  From planetesimals to planets: volatile molecules , 2014, 1407.7282.

[31]  Michael C. Liu,et al.  Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs. II. Properties of 11 T dwarfs , 2016, 1612.02809.

[32]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[33]  Christoph Mordasini,et al.  THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS , 2016, 1609.03019.

[34]  Anthony G. A. Brown,et al.  The mass of the young planet Beta Pictoris b through the astrometric motion of its host star , 2018, Nature Astronomy.

[35]  A. Burrows,et al.  THE DEUTERIUM-BURNING MASS LIMIT FOR BROWN DWARFS AND GIANT PLANETS , 2010, 1008.5150.

[36]  Flavien Kiefer,et al.  Evidence for an additional planet in the β Pictoris system , 2019, Nature Astronomy.

[37]  W. Benz,et al.  From stellar nebula to planetesimals , 2014, 1407.7271.

[38]  Dmitry Savransky,et al.  Dynamical Constraints on the HR 8799 Planets with GPI , 2018, The Astronomical Journal.

[39]  U. Exeter,et al.  A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood , 2015, 1508.05955.

[40]  A. Boccaletti,et al.  Orbital characterization of the β Pictoris b giant planet , 2012, 1202.2655.

[41]  L. Testi,et al.  A STEEPER THAN LINEAR DISK MASS–STELLAR MASS SCALING RELATION , 2016, 1608.03621.

[42]  Nikku Madhusudhan,et al.  TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION , 2014, 1408.3668.

[43]  Bernhard R. Brandl,et al.  Fast spin of the young extrasolar planet β Pictoris b , 2014, Nature.

[44]  Bruce A. Macintosh,et al.  Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet Atmosphere , 2013, Science.

[45]  Bernhard Brandl,et al.  The fast spin-rotation of a young extra-solar planet , 2014 .

[46]  P. Kervella,et al.  Stellar and substellar companions of nearby stars from Gaia DR2 , 2018, Astronomy & Astrophysics.

[47]  T. Henning,et al.  MODEL ATMOSPHERES OF IRRADIATED EXOPLANETS: THE INFLUENCE OF STELLAR PARAMETERS, METALLICITY, AND THE C/O RATIO , 2015, 1509.07523.

[48]  R. Abuter,et al.  The GRAVITY fringe tracker , 2019, Astronomy & Astrophysics.

[49]  R. Galicher,et al.  Physical and orbital properties of β Pictoris b , 2014, 1407.4001.

[50]  J. Patience,et al.  A Uniform Retrieval Analysis of Ultra-cool Dwarfs. III. Properties of Y Dwarfs , 2019, The Astrophysical Journal.

[51]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[52]  Armando Riccardi,et al.  MAGELLAN ADAPTIVE OPTICS FIRST-LIGHT OBSERVATIONS OF THE EXOPLANET β PIC b. II. 3–5 μm DIRECT IMAGING WITH MagAO+Clio, AND THE EMPIRICAL BOLOMETRIC LUMINOSITY OF A SELF-LUMINOUS GIANT PLANET , 2015, 1511.02894.

[53]  I. Kamp,et al.  Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets , 2014, Life.

[54]  Royal Observatory of Edinburgh,et al.  Consistent Simulations of Substellar Atmospheres and Nonequilibrium Dust Cloud Formation , 2008, 0801.3733.

[55]  I. A. G. Snellen,et al.  Detecting isotopologues in exoplanet atmospheres using ground-based high-dispersion spectroscopy , 2018, Astronomy & Astrophysics.

[56]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000 .

[57]  P. Lagage,et al.  Toward the Analysis of JWST Exoplanet Spectra: Identifying Troublesome Model Parameters , 2017, 1710.08235.

[58]  Catherine Walsh,et al.  Setting the volatile composition of (exo)planet-building material. Does chemical evolution in disk midplanes matter? , 2016, 1607.06710.

[59]  S. Rabien,et al.  First direct detection of an exoplanet by optical interferometry , 2019, Astronomy & Astrophysics.

[60]  S. Heap,et al.  HST/GHRS Observations of the β Pictoris System: Basic Parameters and the Age of the System , 1995 .

[61]  David R. Alexander,et al.  THE LIMITING EFFECTS OF DUST IN BROWN DWARF MODEL ATMOSPHERES , 2001 .

[62]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[63]  P. Bouchet,et al.  Infrared aperture photometry at ESO (1983-1994) and its future use. , 1996 .

[64]  Andreas Quirrenbach,et al.  Optical and Infrared Long–Baseline Interferometry: Application to Binary Star Science , 2001 .

[65]  Pierre-Olivier Lagage,et al.  Observing transiting planets with JWST. Prime targets and their synthetic spectral observations , 2016, 1611.08608.

[66]  E. Bergin,et al.  CHEMICAL IMAGING OF THE CO SNOW LINE IN THE HD 163296 DISK , 2015, 1510.00968.

[67]  R. Helled,et al.  HEAVY-ELEMENT ENRICHMENT OF A JUPITER-MASS PROTOPLANET AS A FUNCTION OF ORBITAL LOCATION , 2009, 0903.1997.

[68]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[69]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[70]  M. Cushing,et al.  MASSES, RADII, AND CLOUD PROPERTIES OF THE HR 8799 PLANETS , 2012, 1205.6488.

[71]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[72]  M. Bonnefoy,et al.  HELIOS–RETRIEVAL: An Open-source, Nested Sampling Atmospheric Retrieval Code; Application to the HR 8799 Exoplanets and Inferred Constraints for Planet Formation , 2016, 1610.03216.

[73]  C. Mordasini,et al.  Deuterium burning in objects forming via the core accretion scenario - Brown dwarfs or planets? , 2012, 1210.0538.

[74]  Jonathan P. Williams,et al.  Submillimeter Array Observations of Disks in the SR 24 Multiple Star System , 2004, astro-ph/0411131.

[75]  Timothy D. Brandt The Hipparcos–Gaia Catalog of Accelerations , 2018, The Astrophysical Journal Supplement Series.

[76]  S. Rabien,et al.  Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA* , 2018, Astronomy & Astrophysics.

[77]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[78]  Imke de Pater,et al.  A low-temperature origin for the planetesimals that formed Jupiter , 1999, Nature.

[79]  Jonathan P. Williams,et al.  An ALMA Survey of Protoplanetary Disks in the σ Orionis Cluster , 2017, 1703.08546.

[81]  Marc J. Kuchner,et al.  THE GEMINI NICI PLANET-FINDING CAMPAIGN: THE ORBIT OF THE YOUNG EXOPLANET β PICTORIS b , 2014, 1403.7195.

[82]  Juan Antonio Belmonte,et al.  Handbook of Exoplanets , 2018 .

[83]  E. Bergin,et al.  EXCESS C/O AND C/H IN OUTER PROTOPLANETARY DISK GAS , 2016, 1610.07859.

[84]  Catherine Walsh,et al.  Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes , 2017, 1709.07863.

[85]  Ravit Helled,et al.  Core formation in giant gaseous protoplanets , 2008, 0808.2787.

[86]  C. Helling,et al.  Dust in brown dwarfs. II. The coupled problem of dust formation and sedimentation , 2003 .

[87]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[88]  A. Boccaletti,et al.  Interpreting the photometry and spectroscopy of directly imaged planets: a new atmospheric model applied to β Pictoris b and SPHERE observations , 2015, 1504.04876.

[89]  A. Cameron,et al.  Structure and evolution of isolated giant gaseous protoplanets , 1979 .

[90]  M. Marley,et al.  UNIFORM ATMOSPHERIC RETRIEVAL ANALYSIS OF ULTRACOOL DWARFS. I. CHARACTERIZING BENCHMARKS, Gl 570D AND HD 3651B , 2015, 1504.06670.

[91]  J. Milli,et al.  Full exploration of the giant planet population around β Pictoris , 2018 .

[92]  A.-M. Lagrange,et al.  Constraints on planets around β Pic with Harps radial velocity data , 2012, 1202.2579.

[93]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[94]  Jacob L. Bean,et al.  A DETECTION OF WATER IN THE TRANSMISSION SPECTRUM OF THE HOT JUPITER WASP-12b AND IMPLICATIONS FOR ITS ATMOSPHERIC COMPOSITION , 2015, 1504.05586.

[95]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[96]  Yann Alibert,et al.  New Jupiter and Saturn Formation Models Meet Observations , 2005, astro-ph/0504598.

[97]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[98]  Francoise Delplancke,et al.  Optical and Infrared Interferometry III , 2012 .

[99]  F. Allard,et al.  Models of very-low-mass stars, brown dwarfs and exoplanets , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[100]  V. Béjar,et al.  Brown Dwarfs and Free-Floating Planets in Young Stellar Clusters , 2018 .

[101]  Models of Stars, Brown Dwarfs and Exoplanets , 2011 .

[102]  M. Kenworthy,et al.  Transiting exocomets detected in broadband light by TESS in the β Pictoris system , 2019, Astronomy & Astrophysics.

[103]  J. Hansen Multiple Scattering of Polarized Light in Planetary Atmospheres Part II. Sunlight Reflected by Terrestrial Water Clouds , 1971 .

[104]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[105]  I. Mandel,et al.  Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations , 2015, 1501.05823.

[106]  M. Marley,et al.  METHANE, CARBON MONOXIDE, AND AMMONIA IN BROWN DWARFS AND SELF-LUMINOUS GIANT PLANETS , 2014, 1408.6283.