Matchings, cutsets, and chain partitions in graded posets
暂无分享,去创建一个
[1] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[2] Hunter S. Snevily. Combinatorics of finite sets , 1991 .
[3] Konrad Engel,et al. Sperner theory in partially ordered sets , 1985 .
[4] Joseph P. S. Kung,et al. The Radon Transforms of a Combinatorial Geometry, I , 1979, J. Comb. Theory, Ser. A.
[5] Jerrold R. Griggs. The Sperner Property , 1984 .
[6] J.P.S. Kung. The Radon Transforms of a Combinatorial Geometry .2. Partition Lattices , 1993 .
[7] Jerrold R. Griggs,et al. The Sperner Property in Geometric and Partition Lattices , 1990 .
[8] E. Rodney Canfield. On a problem of rota , 1978 .
[9] R. P. Dilworth,et al. A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .
[10] Jerrold R. Griggs. On Chains and Sperner k-Families in Ranked Posets , 1980, J. Comb. Theory, Ser. A.
[11] G. Rota,et al. Studies in combinatorics , 1980 .
[12] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[13] de Ng Dick Bruijn,et al. On the set of divisors of a number , 1951 .
[14] D. J. Kleitman. On an extremal property of antichains in partial orders , 1974 .
[15] Douglas B. West,et al. Extremal Problems in Partially Ordered Sets , 1982 .
[16] E. Rodney Canfield. Matchings in the Partition Lattice , 1993, SIAM J. Discret. Math..
[17] Ronald L. Graham,et al. Some Results on Matching in Bipartite Graphs , 1969 .
[18] Jerrold R. Griggs,et al. On Chains and Sperner k-Families in Ranked Posets, II , 1980, J. Comb. Theory, Ser. A.
[19] Jerrold R. Griggs,et al. Sufficient Conditions for a Symmetric Chain Order , 1977 .
[20] Richard P. Stanley,et al. Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property , 1980, SIAM J. Algebraic Discret. Methods.