Optimal Design Robust to a Misspecified Model

Usually, in the Theory of Optimal Experimental Design the model is assumed to be known at the design stage. In practice, however, more competing models may be plausible for the same data. There is a possibility to find an optimum design which takes into account both model discrimination (for a subsequent application of a hypothesis test) and parameter estimation. In order to avoid the problem of hypothesis testing, a different approach is proposed: to determine an optimum design which is useful for estimation purposes and is robust to a misspecified model. In other words, the optimum design is “good” for estimating the unknown parameters whether or not the assumed model is correct.

[1]  Anthony C. Atkinson,et al.  D-Optimum Designs for Heteroscedastic Linear Models , 1995 .

[2]  J. López–Fidalgo,et al.  An optimal experimental design criterion for discriminating between non‐normal models , 2007 .

[3]  D. Wiens Robust discrimination designs , 2009 .

[4]  Chiara Tommasi,et al.  Optimal designs for both model discrimination and parameter estimation , 2008 .

[5]  R. Carroll,et al.  A Note on the Efficiency of Sandwich Covariance Matrix Estimation , 2001 .

[6]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[7]  Chiara Tommasi,et al.  Optimal Designs for Discriminating among Several Non-Normal Models , 2007 .

[8]  D. Cox Tests of Separate Families of Hypotheses , 1961 .

[9]  Holger Dette,et al.  Bayesian D-optimal designs on a fixed number of design points for heteroscedastic polynomial models , 1998 .

[10]  A. Atkinson,et al.  The design of experiments for discriminating between two rival models , 1975 .

[11]  S. Weisberg,et al.  Diagnostics for heteroscedasticity in regression , 1983 .

[12]  Paula Camelia Trandafir,et al.  Optimal designs for discriminating between some extensions of the Michaelis–Menten model , 2005 .

[13]  Francisco Cribari-Neto,et al.  Asymptotic inference under heteroskedasticity of unknown form , 2004, Comput. Stat. Data Anal..

[14]  A. Atkinson,et al.  Optimal design : Experiments for discriminating between several models , 1975 .

[15]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[16]  Anthony C. Atkinson,et al.  DT-optimum designs for model discrimination and parameter estimation , 2008 .

[17]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[18]  D. Wiens Minimax Robust Designs and Weights for Approximately Specified Regression Models With Heteroscedastic Errors , 1998 .

[19]  D. Freedman,et al.  On The So-Called “Huber Sandwich Estimator” and “Robust Standard Errors” , 2006 .

[20]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[21]  Anthony C. Atkinson Optimum Experimental Design , 2011, International Encyclopedia of Statistical Science.

[22]  Holger Dette,et al.  Optimal discrimination designs , 2009, 0908.1912.