Multi-Relational Latent Semantic Analysis

We present Multi-Relational Latent Semantic Analysis (MRLSA) which generalizes Latent Semantic Analysis (LSA). MRLSA provides an elegant approach to combining multiple relations between words by constructing a 3-way tensor. Similar to LSA, a lowrank approximation of the tensor is derived using a tensor decomposition. Each word in the vocabulary is thus represented by a vector in the latent semantic space and each relation is captured by a latent square matrix. The degree of two words having a specific relation can then be measured through simple linear algebraic operations. We demonstrate that by integrating multiple relations from both homogeneous and heterogeneous information sources, MRLSA achieves stateof-the-art performance on existing benchmark datasets for two relations, antonymy and is-a.

[1]  Andrew Y. Ng,et al.  Parsing Natural Scenes and Natural Language with Recursive Neural Networks , 2011, ICML.

[2]  Patrick Pantel,et al.  From Frequency to Meaning: Vector Space Models of Semantics , 2010, J. Artif. Intell. Res..

[3]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[4]  Thomas K. Landauer,et al.  On the computational basis of learning and cognition: Arguments from LSA , 2002 .

[5]  Weiwei Guo,et al.  Improving Lexical Semantics for Sentential Semantics: Modeling Selectional Preference and Similar Words in a Latent Variable Model , 2013, HLT-NAACL.

[6]  Geoffrey Zweig,et al.  Polarity Inducing Latent Semantic Analysis , 2012, EMNLP.

[7]  Weiwei Guo,et al.  Modeling Sentences in the Latent Space , 2012, ACL.

[8]  Giorgio Satta,et al.  Approximate PCFG Parsing Using Tensor Decomposition , 2013, NAACL.

[9]  John C. Platt,et al.  Translingual Document Representations from Discriminative Projections , 2010, EMNLP.

[10]  Geoffrey Zweig,et al.  Linguistic Regularities in Continuous Space Word Representations , 2013, NAACL.

[11]  Andrew Y. Ng,et al.  Parsing with Compositional Vector Grammars , 2013, ACL.

[12]  Xin Liu,et al.  Document clustering based on non-negative matrix factorization , 2003, SIGIR.

[13]  Eneko Agirre,et al.  A Study on Similarity and Relatedness Using Distributional and WordNet-based Approaches , 2009, NAACL.

[14]  Sanda M. Harabagiu,et al.  UTD: Determining Relational Similarity Using Lexical Patterns , 2012, *SEMEVAL.

[15]  Raymond J. Mooney,et al.  Multi-Prototype Vector-Space Models of Word Meaning , 2010, NAACL.

[16]  John C. Platt,et al.  Learning Discriminative Projections for Text Similarity Measures , 2011, CoNLL.

[17]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[18]  Peter D. Turney Similarity of Semantic Relations , 2006, CL.

[19]  Geoffrey Zweig,et al.  Combining Heterogeneous Models for Measuring Relational Similarity , 2013, NAACL.

[20]  Tamara G. Kolda,et al.  Scalable Tensor Decompositions for Multi-aspect Data Mining , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[21]  Peter W. Foltz,et al.  Learning Human-like Knowledge by Singular Value Decomposition: A Progress Report , 1997, NIPS.

[22]  Graeme Hirst,et al.  Computing Word-Pair Antonymy , 2008, EMNLP.

[23]  Andrew McCallum,et al.  Relation Extraction with Matrix Factorization and Universal Schemas , 2013, NAACL.

[24]  Xuanjing Huang,et al.  Latent Semantic Tensor Indexing for Community-based Question Answering , 2013, ACL.

[25]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[26]  Peter D. Turney A Uniform Approach to Analogies, Synonyms, Antonyms, and Associations , 2008, COLING.

[27]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[28]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[29]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[30]  Saif Mohammad,et al.  SemEval-2012 Task 2: Measuring Degrees of Relational Similarity , 2012, *SEMEVAL.

[31]  Tamara G. Kolda,et al.  MATLAB Tensor Toolbox , 2006 .

[32]  Michael L. Littman,et al.  Automatic Cross-Language Retrieval Using Latent Semantic Indexing , 1997 .

[33]  Thierry Poibeau,et al.  A Tensor-based Factorization Model of Semantic Compositionality , 2013, NAACL.

[34]  Xiaojin Zhu,et al.  A Topic Model for Word Sense Disambiguation , 2007, EMNLP.

[35]  Wen-tau Yih,et al.  Measuring Word Relatedness Using Heterogeneous Vector Space Models , 2012, HLT-NAACL.