Concurrent transition system semantics of process networks

Using <italic>concurrent transition systems</italic> [Sta86], we establish connections between three models of concurrent process networks, <italic>Kahn functions, input/output automata</italic>, and <italic>labeled processes</italic>. For each model, we define three kinds of algebraic operations on processes: the <italic>product</italic> operation, <italic>abstraction</italic> operations, and <italic>connection</italic> operations. We obtain homomorphic mappings, from input/output automata to labeled processes, and from a subalgebra (called “input/output processes”) of labeled processes to Kahn functions. The proof that the latter mapping preserves connection operations amounts to a new proof of the “Kahn Principle.” Our approach yields: (1) extremely simple definitions of the process operations; (2) a simple and natural proof of the Kahn Principle that does not require the use of “strategies” or “scheduling arguments”; (3) a semantic characterization of a large class of labeled processes for which the Kahn Principle is valid, (4) a convenient operational semantics for nondeterminate process networks.

[1]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[2]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[3]  Manfred Broy,et al.  Fixed PointTheory for Communication and Concurrency , 1982, Formal Description of Programming Concepts.

[4]  John Staples,et al.  A fixpoint semantics for nondeterministic data flow , 1985, JACM.

[5]  Józef Winkowski An Algebraic Description of System Behaviours , 1982, Theor. Comput. Sci..

[6]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[7]  William B. Ackerman,et al.  Scenarios: A Model of Non-Determinate Computation , 1981, ICFPC.

[8]  Gilles Kahn,et al.  The Semantics of a Simple Language for Parallel Programming , 1974, IFIP Congress.

[9]  Prakash Panangaden,et al.  Semantics of Networks Containing Indeterminate Operators , 1984, Seminar on Concurrency.

[10]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[11]  Michael A. Arbib,et al.  Port Automata and the Algebra of Concurrent Processes , 1983, J. Comput. Syst. Sci..

[12]  Józef Winkowski,et al.  Behaviours of Concurrent Systems , 1980, Theor. Comput. Sci..

[13]  Glynn Winskel,et al.  Synchronization Trees , 1984, Theor. Comput. Sci..

[14]  Jean-Jacques Lévy,et al.  Minimal and optimal computations of recursive programs , 1977, JACM.

[15]  D. B. Benson,et al.  Functional Behvior of Nondeterministic and Concurrent Programs , 1984, Inf. Control..

[16]  Glynn Winskel,et al.  Seminar on Concurrency: Carnegie-Mellon University Pittsburgh, PA, July 9-11, 1984 , 1985 .

[17]  Glynn Winskel,et al.  Categories of Models for Concurrency , 1984, Seminar on Concurrency.

[18]  Glynn Winskel,et al.  Petri Nets, Event Structures and Domains, Part I , 1981, Theor. Comput. Sci..

[19]  Gilles Kahn,et al.  Coroutines and Networks of Parallel Processes , 1977, IFIP Congress.

[20]  Antony A. Faustini An Operational Semantics for Pure Dataflow , 1982, ICALP.

[21]  Glynn Winskel,et al.  Event Structures , 1986, Advances in Petri Nets.

[22]  Stephen D. Brookes,et al.  Behavioural Equivalence Relations Induced by Programming Logics , 1983, ICALP.

[23]  Joost N. Kok Denotational Semantics of Nets with Nondeterminism , 1986, ESOP.

[24]  James L. Peterson,et al.  Petri Nets , 1977, CSUR.

[25]  Robert M. Keller,et al.  Denotational Models for Parallel Programs with Indeterminate Operators , 1977, Formal Description of Programming Concepts.

[26]  M. Arbib,et al.  Arrows, Structures, and Functors: The Categorical Imperative , 1975 .

[27]  J. M. Cadiou,et al.  Recursive definitions of partial functions and their computations , 1972, Proving Assertions About Programs.

[28]  Vaughan R. Pratt,et al.  On the composition of processes , 1982, POPL '82.

[29]  Heikki Mannila,et al.  A refinement of Kahn's semantics to handle non-determinism and communication (Extended Abstract) , 1982, PODC '82.

[30]  Irène Guessarian,et al.  Algebraic semantics , 1981, Lecture Notes in Computer Science.