Modelling canopy fuel and forest stand variables and characterizing the influence of thinning in the stand structure using airborne LiDAR
暂无分享,去创建一个
Ana Daría Ruiz-González | Juan Gabriel Álvarez-González | Andrea Hevia | Juan Majada | Eduardo González-Ferreiro | Andrea Hevia | E. González-Ferreiro | J. Majada | J. Álvarez-González | E. Ruiz-Fernández | C. Prendes | A. Ruiz-González | E. Ruiz-Fernández | C. Prendes | E. Ruiz-Fernández
[1] Eric Rigolot,et al. The fire ecology and management of maritime pine (Pinus pinaster Ait.) , 2007 .
[2] S. Reutebuch,et al. Estimating forest canopy fuel parameters using LIDAR data , 2005 .
[3] Jungho Im,et al. Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .
[4] Leo Breiman,et al. Classification and Regression Trees , 1984 .
[5] José Cristóbal Riquelme Santos,et al. Evolutionary feature selection to estimate forest stand variables using LiDAR , 2014, Int. J. Appl. Earth Obs. Geoinformation.
[6] M. Kimberley,et al. ESTIMATION OF CARBON STOCKS IN NEW ZEALAND PLANTED FORESTS USING AIRBORNE SCANNING LIDAR , 2007 .
[7] Yong Pang,et al. Characterizing forest canopy structure with lidar composite metrics and machine learning , 2011 .
[8] E. Næsset. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .
[9] M. E. Alexander,et al. Development of a model system to predict wildfire behaviour in pine plantations , 2008 .
[10] E. Næsset,et al. ASSESSING EFFECTS OF LASER POINT DENSITY ON BIOPHYSICAL STAND PROPERTIES DERIVED FROM AIRBORNE LASER SCANNER DATA IN MATURE FOREST , 2007 .
[11] E. Næsset,et al. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .
[12] Txomin Hermosilla,et al. Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates , 2014 .
[13] U. Diéguez-Aranda,et al. Modelling canopy fuel variables in Pinus pinaster Ait. and Pinus radiata D. Don stands in northwestern Spain , 2012, Annals of Forest Science.
[14] C. E. Van Wagner,et al. Conditions for the start and spread of crown fire , 1977 .
[15] Charles H. Wick,et al. A method of evaluating crown fuels in forest stands. , 1972 .
[16] R. Keane,et al. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling , 2001 .
[17] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[18] Eduardo González-Ferreiro,et al. Modelling canopy fuel variables for Pinus radiata D. Don in NW Spain with low-density LiDAR data , 2014 .
[19] J. Means,et al. Predicting forest stand characteristics with airborne scanning lidar , 2000 .
[20] F. Moreira,et al. Prescribed burning in southern Europe: developing fire management in a dynamic landscape , 2013 .
[21] F. Rego. lAND USE CHANGES AND WILDFIRES , 1992 .
[22] S. G. Tesfamichael,et al. Investigating the impact of discrete-return lidar point density on estimations of mean and dominant plot-level tree height in Eucalyptus grandis plantations , 2010 .
[23] M. Finney. FARSITE : Fire Area Simulator : model development and evaluation , 1998 .
[24] Juha Hyyppä,et al. Comparison of Area-Based and Individual Tree-Based Methods for Predicting Plot-Level Forest Attributes , 2010, Remote. Sens..
[25] K. Lim,et al. Lidar remote sensing of biophysical properties of tolerant northern hardwood forests , 2003 .
[26] Eduardo González-Ferreiro,et al. Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data , 2011 .
[27] J. Reitberger,et al. Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees , 2008 .
[28] B. Ripley,et al. Recursive Partitioning and Regression Trees , 2015 .
[29] I. Burke,et al. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .
[30] Michele Dalponte,et al. The role of ground reference data collection in the prediction of stem volume with LiDAR data in mountain areas , 2011 .
[31] José Cristóbal Riquelme Santos,et al. A Comparative Study between Two Regression Methods on LiDAR Data: A Case Study , 2011, HAIS.
[32] J. A. V. Hidalgo. Efectos del fuego prescrito sobre el suelo en pinares de pinus pinaster ait. De Galicia , 2001 .
[33] Donald C. E. Robinson,et al. An Introduction to the Fire and Fuels Extension to FVS , 1997 .
[34] Joe H. Scott,et al. Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior , 2003 .
[35] R. Dubayah,et al. Use of LIDAR for Forest Inventory and Forest Management Application , 2007 .
[36] Eduardo González-Ferreiro,et al. Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities , 2012 .
[37] Åsa Persson,et al. Identifying species of individual trees using airborne laser scanner , 2004 .
[38] P. Álvarez-Álvarez,et al. Effects of foliar nutrients and environmental factors on site productivity in Pinus pinaster Ait. stands in Asturias (NW Spain) , 2011, Annals of Forest Science.
[39] A. Fernández-Landa,et al. Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements , 2012 .
[40] Guoqing Sun,et al. Forest biomass mapping from lidar and radar synergies , 2011 .
[41] Maggi Kelly,et al. Predicting Surface Fuel Models and Fuel Metrics Using Lidar and CIR Imagery in a Dense, Mountainous Forest , 2013 .
[42] Markus Hollaus,et al. Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment , 2007, Sensors (Basel, Switzerland).
[43] W. Wagner,et al. 3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners , 2008 .
[44] Robert E. Keane,et al. Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements , 2006 .
[45] Mark A. Finney,et al. Calculation of fire spread rates across random landscapes , 2003 .
[46] Frederick W. Smith,et al. Influence of Crown Biomass Estimators and Distribution on Canopy Fuel Characteristics in Ponderosa Pine Stands of the Black Hills , 2009 .
[47] E. Næsset. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .
[48] M. Finney. An Overview of FlamMap Fire Modeling Capabilities , 2006 .