Modelling canopy fuel and forest stand variables and characterizing the influence of thinning in the stand structure using airborne LiDAR

Los incendios forestales suponen una gran amenaza en el NO de Espana. La importancia y frecuencia de estos eventos en la zona sugiere la necesidad de programas de gestion del combustible para reducir la propagacion y severidad de los incendios. La realizacion de una selvicultura de claras puede contribuir a la reduccion del riesgo de incendio, ya que ocasiona una ruptura de la continuidad horizontal del combustible forestal. Ademas, es necesario realizar una gestion del riesgo de incendio basada en el conocimiento de la localizacion del combustible sobre el terreno, puesto que el estudio del comportamiento de un incendio y la simulacion de la propagacion del fuego son dependientes del factor espacial. Por ello, resulta esencial la generacion de mapas del combustible para diferentes escenarios selvicolas. La elaboracion de modelos de estimacion de variables dasometricas y de estructura de la masa a partir de tecnologia LiDAR es el punto de inicio para la elaboracion de una cartografia espacialmente explicita. Esto adquiere mayor valor en los mapas de combustible puesto que la medicion de las variables en campo resulta inviable. En el presente estudio, evaluamos el potencial de la tecnologia LiDAR para estimar variables del combustible de copa y otras variables de masa, asi como para identificar diferencias estructurales a nivel de rodal en masas de Pinus inaster Ait. con y sin manejo selvicola. Las variables independientes (metricas LiDAR) de mayor importancia explicativa fueron identificadas y los analisis de regresion indicaron fuertes relaciones entre estas y las ariables medidas en campo ( R 2  vario entre 0.86 y 0.97). Por otra parte, se observaron diferencias significativas en algunas metricas LiDAR cuando se compararon masas aclaradas y no aclaradas. Los resultados demostraron que la tecnologia LiDAR permite la modelizacion de variables de masa y de combustible de copa con alta precision en esta especie, y que proporciona informacion util para la identificacion de areas con y sin gestion selvicola.

[1]  Eric Rigolot,et al.  The fire ecology and management of maritime pine (Pinus pinaster Ait.) , 2007 .

[2]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[3]  Jungho Im,et al.  Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .

[4]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[5]  José Cristóbal Riquelme Santos,et al.  Evolutionary feature selection to estimate forest stand variables using LiDAR , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[6]  M. Kimberley,et al.  ESTIMATION OF CARBON STOCKS IN NEW ZEALAND PLANTED FORESTS USING AIRBORNE SCANNING LIDAR , 2007 .

[7]  Yong Pang,et al.  Characterizing forest canopy structure with lidar composite metrics and machine learning , 2011 .

[8]  E. Næsset Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .

[9]  M. E. Alexander,et al.  Development of a model system to predict wildfire behaviour in pine plantations , 2008 .

[10]  E. Næsset,et al.  ASSESSING EFFECTS OF LASER POINT DENSITY ON BIOPHYSICAL STAND PROPERTIES DERIVED FROM AIRBORNE LASER SCANNER DATA IN MATURE FOREST , 2007 .

[11]  E. Næsset,et al.  Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .

[12]  Txomin Hermosilla,et al.  Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates , 2014 .

[13]  U. Diéguez-Aranda,et al.  Modelling canopy fuel variables in Pinus pinaster Ait. and Pinus radiata D. Don stands in northwestern Spain , 2012, Annals of Forest Science.

[14]  C. E. Van Wagner,et al.  Conditions for the start and spread of crown fire , 1977 .

[15]  Charles H. Wick,et al.  A method of evaluating crown fuels in forest stands. , 1972 .

[16]  R. Keane,et al.  Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling , 2001 .

[17]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[18]  Eduardo González-Ferreiro,et al.  Modelling canopy fuel variables for Pinus radiata D. Don in NW Spain with low-density LiDAR data , 2014 .

[19]  J. Means,et al.  Predicting forest stand characteristics with airborne scanning lidar , 2000 .

[20]  F. Moreira,et al.  Prescribed burning in southern Europe: developing fire management in a dynamic landscape , 2013 .

[21]  F. Rego lAND USE CHANGES AND WILDFIRES , 1992 .

[22]  S. G. Tesfamichael,et al.  Investigating the impact of discrete-return lidar point density on estimations of mean and dominant plot-level tree height in Eucalyptus grandis plantations , 2010 .

[23]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[24]  Juha Hyyppä,et al.  Comparison of Area-Based and Individual Tree-Based Methods for Predicting Plot-Level Forest Attributes , 2010, Remote. Sens..

[25]  K. Lim,et al.  Lidar remote sensing of biophysical properties of tolerant northern hardwood forests , 2003 .

[26]  Eduardo González-Ferreiro,et al.  Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data , 2011 .

[27]  J. Reitberger,et al.  Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees , 2008 .

[28]  B. Ripley,et al.  Recursive Partitioning and Regression Trees , 2015 .

[29]  I. Burke,et al.  Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .

[30]  Michele Dalponte,et al.  The role of ground reference data collection in the prediction of stem volume with LiDAR data in mountain areas , 2011 .

[31]  José Cristóbal Riquelme Santos,et al.  A Comparative Study between Two Regression Methods on LiDAR Data: A Case Study , 2011, HAIS.

[32]  J. A. V. Hidalgo Efectos del fuego prescrito sobre el suelo en pinares de pinus pinaster ait. De Galicia , 2001 .

[33]  Donald C. E. Robinson,et al.  An Introduction to the Fire and Fuels Extension to FVS , 1997 .

[34]  Joe H. Scott,et al.  Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior , 2003 .

[35]  R. Dubayah,et al.  Use of LIDAR for Forest Inventory and Forest Management Application , 2007 .

[36]  Eduardo González-Ferreiro,et al.  Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities , 2012 .

[37]  Åsa Persson,et al.  Identifying species of individual trees using airborne laser scanner , 2004 .

[38]  P. Álvarez-Álvarez,et al.  Effects of foliar nutrients and environmental factors on site productivity in Pinus pinaster Ait. stands in Asturias (NW Spain) , 2011, Annals of Forest Science.

[39]  A. Fernández-Landa,et al.  Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements , 2012 .

[40]  Guoqing Sun,et al.  Forest biomass mapping from lidar and radar synergies , 2011 .

[41]  Maggi Kelly,et al.  Predicting Surface Fuel Models and Fuel Metrics Using Lidar and CIR Imagery in a Dense, Mountainous Forest , 2013 .

[42]  Markus Hollaus,et al.  Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment , 2007, Sensors (Basel, Switzerland).

[43]  W. Wagner,et al.  3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners , 2008 .

[44]  Robert E. Keane,et al.  Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements , 2006 .

[45]  Mark A. Finney,et al.  Calculation of fire spread rates across random landscapes , 2003 .

[46]  Frederick W. Smith,et al.  Influence of Crown Biomass Estimators and Distribution on Canopy Fuel Characteristics in Ponderosa Pine Stands of the Black Hills , 2009 .

[47]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[48]  M. Finney An Overview of FlamMap Fire Modeling Capabilities , 2006 .