An iterative algorithm for simulation error based identification of polynomial input–output models using multi-step prediction

Effective identification of polynomial input–output models for applications requiring long-range prediction or simulation performance relies on both careful model selection and accurate parameter estimation. The simulation error minimisation (SEM) approach has been shown to provide significant advantages in the model selection phase by ruling out candidate models with good short-term prediction capabilities but unsuitable long-term dynamics. However, SEM-based parameter estimation has been generally avoided due to excessive computational effort. This article extends to the nonlinear case a computationally efficient approach for this task, that was previously developed for linear models, based on the iterative estimation of predictors with increasing prediction horizon. Conditions for the applicability of the approach to various model classes are also discussed. Finally, some examples are provided to show the effectiveness and computational convenience of the proposed algorithm for polynomial input–output identification, as well as the improvements achievable by enforcing SEM parameter estimation. A benchmark for nonlinear identification is also analysed, with encouraging results.

[1]  Luigi Piroddi,et al.  SEISMIC BEHAVIOUR OF BUTTRESS DAMS: NON-LINEAR MODELLING OF A DAMAGED BUTTRESS BASED ON ARX/NARX MODELS , 2001 .

[2]  Winfried Stefan Lohmiller,et al.  Contraction analysis of nonlinear systems , 1999 .

[3]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[4]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[5]  L. A. Aguirre,et al.  EFFECTS OF THE SAMPLING TIME ON THE DYNAMICS AND IDENTIFICATION OF NONLINEAR MODELS , 1995 .

[6]  S. Billings,et al.  Orthogonal parameter estimation algorithm for non-linear stochastic systems , 1988 .

[7]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[8]  David Rees,et al.  Nonlinear gas turbine modeling using NARMAX structures , 2001, IEEE Trans. Instrum. Meas..

[9]  Petre Stoica,et al.  Some properties of the output error method , 1982, Autom..

[10]  Luigi Piroddi,et al.  Structure selection for polynomial NARX models based on simulation error minimization , 2003 .

[11]  Rajamani Doraiswami,et al.  Identification of a class of unstable processes , 2009, 2009 5th IEEE GCC Conference & Exhibition.

[12]  L. Piroddi,et al.  An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .

[13]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[14]  P.M.J. Van den Hof,et al.  Modeling and Identification of Linear Parameter-Varying Systems, an Orthonormal Basis Function Approach , 2004 .

[15]  X. Rong Li,et al.  General model-set design methods for multiple-model approach , 2005, IEEE Transactions on Automatic Control.

[16]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[17]  Sunil L. Kukreja,et al.  A LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO) FOR NONLINEAR SYSTEM IDENTIFICATION , 2006 .

[18]  Sheng Chen,et al.  Model selection approaches for non-linear system identification: a review , 2008, Int. J. Syst. Sci..

[19]  L. A. Aguirre,et al.  Use of a priori information in the identification of global nonlinear models-a case study using a buck converter , 2000 .

[20]  Luis Antonio Aguirre,et al.  Stability analysis of sleep apnea time series using identified models: a case study , 2004, Comput. Biol. Medicine.

[21]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[22]  Peter J. Fleming,et al.  Time and frequency domain identification and analysis of a gas turbine engine , 2002 .

[23]  Sheng Chen,et al.  Prediction-error estimation algorithm for non-linear output-affine systems , 1988 .

[24]  Marcello Farina,et al.  Simulation Error Minimization–Based Identification of Polynomial Input–Output Recursive Models , 2009 .

[25]  Johan A. K. Suykens,et al.  Wiener-Hammerstein Benchmark , 2009 .

[26]  George W. Irwin,et al.  A fast nonlinear model identification method , 2005, IEEE Transactions on Automatic Control.

[27]  S. Billings,et al.  Algorithms for minimal model structure detection in nonlinear dynamic system identification , 1997 .

[28]  Marcello Farina,et al.  Some convergence properties of multi-step prediction error identification criteria , 2008, 2008 47th IEEE Conference on Decision and Control.

[29]  Robert Haber Nonlinear System Identification : Input-output Modeling Approach , 1999 .

[30]  Kang Li,et al.  A two-stage algorithm for identification of nonlinear dynamic systems , 2006, Autom..

[31]  Luigi Piroddi,et al.  Simulation error minimisation methods for NARX model identification , 2008, Int. J. Model. Identif. Control..

[32]  Marcello Farina,et al.  Polynomial NARX Model Identification: a Wiener–Hammerstein Benchmark , 2009 .

[33]  Alberto Leva,et al.  NARX-based technique for the modelling of magneto-rheological damping devices , 2002 .

[34]  George W. Irwin,et al.  Prediction- and simulation-error based perceptron training: Solution space analysis and a novel combined training scheme , 2007, Neurocomputing.

[35]  Alireza Karimi,et al.  On the Consistency of Certain Identification Methods for Linear Parameter Varying Systems , 2008 .

[36]  Marcello Farina,et al.  Identification of polynomial input/output recursive models with simulation error minimisation methods , 2012, Int. J. Syst. Sci..

[37]  L. A. Aguirre,et al.  Improved structure selection for nonlinear models based on term clustering , 1995 .

[38]  R. Th Modeling and identification of linear parameter-varying systems: an orthonormal basis function Approach , 2008 .

[39]  M. Basin New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems , 2008 .

[40]  Z. Gosiewski,et al.  Identification of Physical Parameters of Unstable Systems: Theoretical Background , 2003 .