On the Complexity of Nonoverlapping Multivariate Marginal Bounds for Probabilistic Combinatorial Optimization Problems

Given a combinatorial optimization problem with an arbitrary partition of the set of random objective coefficients, we evaluate the tightest-possible bound on the expected optimal value for joint distributions consistent with the given multivariate marginals of the subsets in the partition. For univariate marginals, this bound was first proposed by Meilijson and Nadas [Meilijson, I., A. Nadas. 1979. Convex majorization with an application to the length of critical path. J. Appl. Probab.16(3) 671--677]. We generalize the bound to nonoverlapping multivariate marginals using multiple-choice integer programming. New instances of polynomial-time computable bounds are identified for discrete distributions. For the problem of selecting up to M items out of a set of N items of maximum total weight, the multivariate marginal bound is shown to be computable in polynomial time, when the size of each subset in the partition is O(log N). For an activity-on-arc PERT network, the partition is naturally defined by subsets of incoming arcs into nodes. The multivariate marginal bound on expected project duration is shown to be computable in time polynomial in the maximum number of scenarios for any subset and the size of the network. As an application, a polynomial-time solvable two-stage stochastic program for project crashing is identified. An important feature of the bound developed in this paper is that it is exactly achievable by a joint distribution, unlike many of the existing bounds.

[1]  Chung-Piaw Teo,et al.  Persistency Model and Its Applications in Choice Modeling , 2009, Manag. Sci..

[2]  Moshe Shaked,et al.  Linkages: A Tool for the Construction of Multivariate Distributions with Given Nonoverlapping Multivariate Marginals , 1996 .

[3]  Andrew W. Shogan Bounding distributions for a stochastic pert network , 1977, Networks.

[4]  John R. Birge,et al.  Bounds on Expected Project Tardiness , 1995, Oper. Res..

[5]  F. J. Radermacher,et al.  Chapter 4 – THE ORDER-THEORETIC APPROACH TO SCHEDULING: THE STOCHASTIC CASE , 1989 .

[6]  Rolf H. Möhring,et al.  Scheduling under Uncertainty: Bounding the Makespan Distribution , 2001, Computational Discrete Mathematics.

[7]  T. I. Kirkpatrick,et al.  PERT as an aid to logic design , 1966 .

[8]  Moshe Shaked,et al.  Bounds for the distribution of a multivariate sum , 1996 .

[9]  Michael R. Duffey,et al.  Statistical dependence in risk analysis for project networks using Monte Carlo methods , 1999 .

[10]  Bajis M. Dodin,et al.  Bounding the Project Completion Time Distribution in PERT Networks , 1985, Oper. Res..

[11]  Christian Genest,et al.  De l'impossibilité de construire des lois à marges multidimensionnelles données à partir de copules , 1995 .

[12]  A. Nadas,et al.  Probabilistic PERT , 1979 .

[13]  Ludger Rüschendorf,et al.  Distributions with fixed marginals and related topics , 1999 .

[14]  Ludger Rüschendorf,et al.  Solution of a statistical optimization problem by rearrangement methods , 1983 .

[15]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[16]  George B. Kleindorfer,et al.  Bounding Distributions for a Stochastic Acyclic Network , 1971, Oper. Res..

[17]  Dimitris Bertsimas,et al.  Persistence in discrete optimization under data uncertainty , 2006, Math. Program..

[18]  Roman Słowiński,et al.  Advances in project scheduling , 1989 .

[19]  David Blaauw,et al.  Statistical timing analysis using bounds and selective enumeration , 2003, TAU '02.

[20]  Natesan Venkateswaran,et al.  First-Order Incremental Block-Based Statistical Timing Analysis , 2006, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[22]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[23]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[24]  D. R. Fulkerson Expected Critical Path Lengths in PERT Networks , 1962 .

[25]  Gideon Weiss Stochastic bounds on distributions of optimal value functions with applications to pert, network flows and reliability , 1984, Ann. Oper. Res..

[26]  Jane N. Hagstrom,et al.  Computational complexity of PERT problems , 1988, Networks.

[27]  David Blaauw,et al.  Statistical Timing Analysis: From Basic Principles to State of the Art , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[28]  Paul Embrechts,et al.  Bounds for functions of multivariate risks , 2006 .

[29]  Isaac Meilijson,et al.  Convex majorization with an application to the length of critical paths , 1979, Journal of Applied Probability.

[30]  Isaac Meilijson,et al.  Sharp Bounds on the Largest of some Linear Combinations of Random Variables with Given Marginal Distributions , 1991, Probability in the Engineering and Informational Sciences.

[31]  H. Robbins,et al.  Maximally dependent random variables. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[32]  James C. Bean,et al.  A Lagrangean algorithm for the multiple choice integer program , 1983 .

[33]  L. Rüschendorf Comparison of multivariate risks and positive dependence , 2004, Journal of Applied Probability.

[34]  Dimitris Bertsimas,et al.  Probabilistic Combinatorial Optimization: Moments, Semidefinite Programming, and Asymptotic Bounds , 2004, SIAM J. Optim..

[35]  Charles J. Colbourn,et al.  Chapter 11 Network reliability , 1995 .

[36]  K. Dudzinski,et al.  Exact methods for the knapsack problem and its generalizations , 1987 .

[37]  W. K. Haneveld Robustness against dependence in PERT: An application of duality and distributions with known marginals , 1986 .

[38]  James C. Bean,et al.  Technical Note - A Langrangian Algorithm for the Multiple Choice Integer Program , 1984, Oper. Res..

[39]  J. Scott Provan,et al.  The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected , 1983, SIAM J. Comput..

[40]  Marco Scarsini,et al.  Copulae of probability measures on product spaces , 1989 .

[41]  R. Wollmer Critical path planning under uncertainty , 1985 .

[42]  Larry J. Ringer,et al.  A Statistical Theory for Pert in Which Completion Times of Activities are Inter-Dependent , 1971 .

[43]  Refractor,et al.  Third webspace to thumb digital nerve transfer for traumatic avulsion injury , 2023, The Journal of hand surgery, European volume.