MFEM: a modular finite element methods library
暂无分享,去创建一个
Stefano Zampini | Tzanio V. Kolev | Andrew T. Barker | Will Pazner | Veselin Dobrev | Julian Andrej | Sylvain Camier | Aaron Fisher | Jakub Cervený | Vladimir Z. Tomov | Jamie A. Bramwell | Yohann Dudouit | Mark Stowell | Johann Dahm | Robert W. Anderson | David Medina | T. Kolev | A. Fisher | S. Zampini | A. Barker | J. Cervený | V. Dobrev | Will Pazner | V. Tomov | Jean-Sylvain Camier | Yohann Dudouit | M. Stowell | Julian Andrej | Johann Dahm | David S. Medina
[1] William Schroeder,et al. The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .
[2] Stefano Zampini,et al. Multilevel Balancing Domain Decomposition by Constraints Deluxe Algorithms with Adaptive Coarse Spaces for Flow in Porous Media , 2017, SIAM J. Sci. Comput..
[3] Panayot S. Vassilevski,et al. Exact de Rham Sequences of Spaces Defined on Macro-Elements in Two and Three Spatial Dimensions , 2008, SIAM J. Sci. Comput..
[4] Michel Deville,et al. Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning , 1985 .
[5] P. Fischer,et al. High-Order Methods for Incompressible Fluid Flow , 2002 .
[6] D. Arnold. Differential complexes and stability of finite element methods. I. The de Rham complex , 2006 .
[7] Carol S. Woodward,et al. Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..
[8] Jed Brown,et al. Efficient Nonlinear Solvers for Nodal High-Order Finite Elements in 3D , 2010, J. Sci. Comput..
[9] David Wells,et al. The deal.II library, version 8.5 , 2013, J. Num. Math..
[10] Andreas Dedner,et al. The Distributed and Unified Numerics Environment,Version 2.4 , 2016 .
[11] Timothy A. Davis,et al. Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.
[12] Hank Childs,et al. VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .
[13] Martin Kronbichler,et al. Scalability of high-performance PDE solvers , 2020, Int. J. High Perform. Comput. Appl..
[14] Jay Gopalakrishnan,et al. A scalable preconditioner for a DPG method , 2016 .
[15] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[16] Vincent Heuveline,et al. H1-interpolation on quadrilateral and hexahedral meshes with hanging nodes , 2007, Computing.
[17] Panayot S. Vassilevski,et al. The Construction of the Coarse de Rham Complexes with Improved Approximation Properties , 2014, Comput. Methods Appl. Math..
[18] Pierre Thore,et al. Stress estimation in reservoirs using an integrated inverse method , 2018, Comput. Geosci..
[19] David E. Keyes,et al. On the Robustness and Prospects of Adaptive BDDC Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients , 2016, PASC.
[20] Douglas N. Arnold,et al. Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM J. Sci. Comput..
[21] Toplogical optimization of structures using Fourier representations , 2018 .
[22] Duk-Soon Oh,et al. BDDC Algorithms with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector fields , 2017, Math. Comput..
[23] Patrick M. Knupp,et al. Introducing the target-matrix paradigm for mesh optimization via node-movement , 2012, Engineering with Computers.
[24] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[25] Stefano Zampini,et al. Adaptive BDDC Deluxe Methods for H(curl) , 2017 .
[26] Viatcheslav Gurev,et al. A high-resolution computational model of the deforming human heart , 2015, Biomechanics and modeling in mechanobiology.
[27] E. R. Shemon,et al. User Manual for EXODUS II Mesh Converter , 2014 .
[28] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[29] Will Pazner,et al. Efficient low-order refined preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods , 2019, SIAM J. Sci. Comput..
[30] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[31] Anders Logg,et al. The FEniCS Project Version 1.5 , 2015 .
[32] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[33] Leszek Demkowicz,et al. Toward a universal h-p adaptive finite element strategy , 1989 .
[34] Michael J. Holst,et al. Adaptive Numerical Treatment of Elliptic Systems on Manifolds , 2001, Adv. Comput. Math..
[35] Samuel Williams,et al. An Efficient Multicore Implementation of a Novel HSS-Structured Multifrontal Solver Using Randomized Sampling , 2015, SIAM J. Sci. Comput..
[36] Veselin Dobrev,et al. Monotonicity in high‐order curvilinear finite element arbitrary Lagrangian–Eulerian remap , 2015 .
[37] D. Arnold. Finite Element Exterior Calculus , 2018 .
[38] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[39] Srinivas Aluru,et al. Parallel domain decomposition and load balancing using space-filling curves , 1997, Proceedings Fourth International Conference on High-Performance Computing.
[40] Richard D. Hornung,et al. The RAJA Portability Layer: Overview and Status , 2014 .
[41] R. N. Hill,et al. Constrained optimization framework for interface-aware sub-scale dynamics closure model for multimaterial cells in Lagrangian and arbitrary Lagrangian-Eulerian hydrodynamics , 2014, J. Comput. Phys..
[42] Patrick Knupp,et al. Towards Simulation-Driven Optimization of High-Order Meshes by the Target-Matrix Optimization Paradigm , 2018, IMR.
[43] Will Pazner,et al. High-order matrix-free incompressible flow solvers with GPU acceleration and low-order refined preconditioners , 2019, ArXiv.
[44] Steffen Müthing,et al. High-performance Implementation of Matrix-free High-order Discontinuous Galerkin Methods , 2017, ArXiv.
[45] Panayot S. Vassilevski,et al. PARALLEL AUXILIARY SPACE AMG FOR H(curl) PROBLEMS , 2009 .
[46] Tzanio V. Kolev,et al. Nonconforming Mesh Refinement for High-Order Finite Elements , 2019, SIAM J. Sci. Comput..
[47] Katharina Kormann,et al. Fast Matrix-Free Evaluation of Discontinuous Galerkin Finite Element Operators , 2017, ACM Trans. Math. Softw..
[48] David Wells,et al. The deal.II Library, Version 8.4 , 2016, J. Num. Math..
[49] Tzanio V. Kolev,et al. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..
[50] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[51] Panayot S. Vassilevski,et al. Spectral Upscaling for Graph Laplacian Problems with Application to Reservoir Simulation , 2017, SIAM J. Sci. Comput..
[52] S. Orszag. Spectral methods for problems in complex geometries , 1980 .
[53] Panayot S. Vassilevski,et al. Algebraic Hybridization and Static Condensation with Application to Scalable H(div) Preconditioning , 2018, SIAM J. Sci. Comput..
[54] Andreas Dedner,et al. The Distributed and Unified Numerics Environment (DUNE) , 2006 .
[55] Tzanio V. Kolev,et al. High order curvilinear finite elements for elastic-plastic Lagrangian dynamics , 2014, J. Comput. Phys..
[56] Stefano Zampini,et al. PCBDDC: A Class of Robust Dual-Primal Methods in PETSc , 2016, SIAM J. Sci. Comput..
[57] Richard Liska,et al. High‐order discontinuous Galerkin nonlocal transport and energy equations scheme for radiation hydrodynamics , 2017 .
[58] Xiaoye S. Li,et al. An overview of SuperLU: Algorithms, implementation, and user interface , 2003, TOMS.
[59] Mark Ainsworth,et al. Bernstein-Bézier Finite Elements of Arbitrary Order and Optimal Assembly Procedures , 2011, SIAM J. Sci. Comput..
[60] Ümit V. Çatalyürek,et al. The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing: Partitioning, ordering and coloring , 2012, Sci. Program..
[61] Benjamin S. Kirk,et al. Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .
[62] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[63] M. Shephard,et al. Curved boundary layer meshing for adaptive viscous flow simulations , 2010 .
[64] Emil M. Constantinescu,et al. PETSc/TS: A Modern Scalable ODE/DAE Solver Library , 2018, 1806.01437.
[65] I. Doležel,et al. Higher-Order Finite Element Methods , 2003 .
[66] Mark S. Shephard,et al. Moving curved mesh adaptation for higher-order finite element simulations , 2010, Engineering with Computers.
[67] T. Schönfeld. ADAPTIVE MESH REFINEMENT METHODS FOR THREE-DIMENSIONAL INVISCID FLOW PROBLEMS , 1995 .
[68] Tzanio V. Kolev,et al. The Target-Matrix Optimization Paradigm for High-Order Meshes , 2018, SIAM J. Sci. Comput..
[69] Alexander Heinecke,et al. LIBXSMM: Accelerating Small Matrix Multiplications by Runtime Code Generation , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.
[70] S LiXiaoye. An overview of SuperLU , 2005 .
[71] Tzanio V. Kolev,et al. Multi‐material closure model for high‐order finite element Lagrangian hydrodynamics , 2016 .
[72] Olof B. Widlund,et al. Isogeometric BDDC Preconditioners with Deluxe Scaling , 2014, SIAM J. Sci. Comput..
[73] G. Plank,et al. A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models , 2012, Annals of Biomedical Engineering.
[74] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[75] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[76] Tzanio V. Kolev,et al. High-Order Multi-Material ALE Hydrodynamics , 2018, SIAM J. Sci. Comput..
[77] Stefano Zampini,et al. Balancing Domain Decomposition by Constraints Algorithms for Curl-Conforming Spaces of Arbitrary Order , 2017 .
[78] Bruno Lévy,et al. Computing the Distance between Two Finite Element Solutions Defined on Different 3D Meshes on a GPU , 2018, SIAM J. Sci. Comput..
[79] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[80] Ivo Dolezel,et al. Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM , 2008, Math. Comput. Simul..