A Novel Ultrawideband Transmitarray Design Using Tightly Coupled Dipole Elements

One of the key challenges in transmitarray (TA) designs is its narrow bandwidth. To overcome this limitation, this paper proposes a novel design of ultrawideband TA antenna based on tightly coupled dipole arrays (TCDAs). The array consists of <inline-formula> <tex-math notation="LaTeX">$20 \times 10$ </tex-math></inline-formula> unit cells, and each unit cell is composed of a pair of short dipoles connected with a section of meandered transmission line. The size of each unit cell is 20 <inline-formula> <tex-math notation="LaTeX">$\text {mm} \times 10$ </tex-math></inline-formula> mm, which is about <inline-formula> <tex-math notation="LaTeX">$0.2\lambda \times 0.1\lambda $ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$\lambda $ </tex-math></inline-formula> is the wavelength in free space at the lowest working frequency of the TA. By utilizing the strong coupling between adjacent units of the TA, the bandwidth of the TA is improved significantly. To verify the design concept, one prototype of the proposed TA is fabricated and measured. The prototype demonstrates good performance over a bandwidth of 104%, i.e., from 3.0 to 9.5 GHz, which is significantly wider than that of other TAs reported in the literature. Within the working band of the TA antenna, the radiation pattern is stable and no distortion or splitting of the main beam of the antenna is observed. This is the first time that the TA based on TCDA is reported.

[1]  D. Pozar Flat lens antenna concept using aperture coupled microstrip patches , 1996 .

[2]  J. E. Page,et al.  Design of Broadband Transmitarray Unit Cells With Comparative Study of Different Numbers of Layers , 2015, IEEE Transactions on Antennas and Propagation.

[3]  P. Rezaei,et al.  High-Efficient Wideband Transmitarray Antenna , 2018, IEEE Antennas and Wireless Propagation Letters.

[4]  Guangming Wang,et al.  Dual-Mode Transmissive Metasurface and Its Applications in Multibeam Transmitarray , 2017, IEEE Transactions on Antennas and Propagation.

[5]  Fan Yang,et al.  Transmission Phase Limit of Multilayer Frequency-Selective Surfaces for Transmitarray Designs , 2014, IEEE Transactions on Antennas and Propagation.

[6]  Shi-Wei Qu,et al.  Planar lens antenna based on low-pass frequency selective surfaces , 2017, 2017 International Applied Computational Electromagnetics Society Symposium (ACES).

[7]  Maokun Li,et al.  An Efficient Dual-Band Orthogonally Polarized Transmitarray Design Using Three-Dipole Elements , 2018, IEEE Antennas and Wireless Propagation Letters.

[8]  S. S. Holland,et al.  The Planar Ultrawideband Modular Antenna (PUMA) Array , 2012, IEEE Transactions on Antennas and Propagation.

[9]  Tong Cai,et al.  High-Efficiency Metasurface With Polarization-Dependent Transmission and Reflection Properties for Both Reflectarray and Transmitarray , 2018, IEEE Transactions on Antennas and Propagation.

[10]  T. Koleck,et al.  Wideband Low-Loss Linear and Circular Polarization Transmit-Arrays in V-Band , 2011, IEEE Transactions on Antennas and Propagation.

[11]  Maokun Li,et al.  A Double-Layer Transmitarray Antenna Using Malta Crosses With Vias , 2016, IEEE Transactions on Antennas and Propagation.

[12]  Long Zhang,et al.  An Ultra-Wide-Band Tightly Coupled Dipole Reflectarray Antenna , 2018, IEEE Transactions on Antennas and Propagation.

[13]  Alfonso Muñoz Acevedo,et al.  Passive Microstrip Transmitarray Lens for Ku Band , 2010, EuCAP 2010.

[14]  Qi Luo,et al.  Wideband Transmitarray With Reduced Profile , 2018, IEEE Antennas and Wireless Propagation Letters.

[15]  Atef Z. Elsherbeni,et al.  Bandwidth Improvement Methods of Transmitarray Antennas , 2015, IEEE Transactions on Antennas and Propagation.

[16]  N. Behdad,et al.  Wideband Planar Microwave Lenses Using Sub-Wavelength Spatial Phase Shifters , 2011, IEEE Transactions on Antennas and Propagation.

[17]  John L. Volakis,et al.  Wideband Planar Array With Integrated Feed and Matching Network for Wide-Angle Scanning , 2013, IEEE Transactions on Antennas and Propagation.

[18]  Atef Z. Elsherbeni,et al.  Analysis and design of wideband transmitarray antennas with different unit-cell phase ranges , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[19]  Laurent Dussopt,et al.  Wideband 400-Element Electronically Reconfigurable Transmitarray in X Band , 2013, IEEE Transactions on Antennas and Propagation.

[20]  G. Di Massa,et al.  Multilayer Antenna-Filter Antenna for Beam-Steering Transmit-Array Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[21]  Jingshan Jiang,et al.  A High-Efficiency Transmitarray Antenna Using Double Split Ring Slot Elements , 2015, IEEE Antennas and Wireless Propagation Letters.

[22]  Yang Chen,et al.  A C-Band Flat Lens Antenna With Double-Ring Slot Elements , 2013, IEEE Antennas and Wireless Propagation Letters.

[23]  H. Hassani,et al.  Low-Profile Slot Transmitarray Antenna , 2015, IEEE Transactions on Antennas and Propagation.

[24]  S. Hum,et al.  A Wideband Reconfigurable Transmitarray Element , 2012, IEEE Transactions on Antennas and Propagation.

[25]  Anthony Grbic,et al.  Planar Lens Antennas of Subwavelength Thickness: Collimating Leaky-Waves With Metasurfaces , 2015, IEEE Transactions on Antennas and Propagation.

[26]  C. Pfeiffer,et al.  Millimeter-Wave Transmitarrays for Wavefront and Polarization Control , 2013, IEEE Transactions on Microwave Theory and Techniques.

[27]  I. Tzanidis,et al.  UWB Low-Profile Tightly Coupled Dipole Array With Integrated Balun and Edge Terminations , 2013, IEEE Transactions on Antennas and Propagation.