Modelling location, scale and shape parameters of the birnbaum-saunders generalized t distribution

The Birnbaum-Saunders generalized t (BSGT) distribution is a very flflexible family of distributions that admits different degrees of skewness and kurtosis and includes some important special or limiting cases available in the literature, such as the Birnbaum-Saunders and Birnbaum-Saunders t distributions. In this paper we provide a regression type model to the BSGT distribution based on the generalized additive models for location, scale and shape (GAMLSS) framework. The resulting model has high flflexibility and therefore a great potential to model the distribution parameters of response variables that present light or heavy tails, i.e. platykurtic or leptokurtic shapes, as functions of explanatory variables. For different parameter settings, some simulations are performed to investigate the behavior of the estimators. The potentiality of the new regression model is illustrated by means of a real motor vehicle insurance data set.

[1]  José A. Díaz-García,et al.  A new family of life distributions based on the elliptically contoured distributions , 2005 .

[2]  Filidor Vilca-Labra,et al.  A New Fatigue Life Model Based on the Family of Skew-Elliptical Distributions , 2006 .

[3]  Gillian Z. Heller,et al.  Generalized Linear Models for Insurance Data , 2008 .

[4]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[5]  Gilberto A. Paula,et al.  Influence Diagnostics in log-Birnbaum-Saunders Regression Models , 2004 .

[6]  H. Akaike A new look at the statistical model identification , 1974 .

[7]  Francisco Louzada,et al.  A New Long-Term Survival Distribution for Cancer Data , 2012, Journal of Data Science.

[8]  Feng-Chang Xie,et al.  Diagnostics analysis for log-Birnbaum-Saunders regression models , 2007, Comput. Stat. Data Anal..

[9]  Gauss M. Cordeiro,et al.  Birnbaum-Saunders nonlinear regression models , 2009, Comput. Stat. Data Anal..

[10]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[11]  M. Nikulin,et al.  Application of Sedyakin’s model and Birnbaum-Saunders family for statistical analysis of redundant systems with one warm stand-by unit , 2013 .

[12]  Rafał Podlaski,et al.  Characterization of diameter distribution data in near-natural forests using the Birnbaum–Saunders distribution , 2008 .

[13]  José M. Angulo,et al.  A length-biased version of the Birnbaum-Saunders distribution with application in water quality , 2009 .

[14]  James B. McDonald,et al.  Partially Adaptive Estimation of Regression Models via the Generalized T Distribution , 1988, Econometric Theory.

[15]  Cristian Villegas,et al.  Birnbaum-Saunders Mixed Models for Censored Reliability Data Analysis , 2011, IEEE Transactions on Reliability.

[16]  G. Cordeiro,et al.  The Kummer beta Birnbaum-Saunders: An alternative fatigue life distribution , 2014 .

[17]  Gilberto A. Paula,et al.  Influence diagnostics in log-Birnbaum-Saunders regression models with censored data , 2007, Comput. Stat. Data Anal..

[18]  George Christakos,et al.  An extended Birnbaum–Saunders model and its application in the study of environmental quality in Santiago, Chile , 2010 .

[19]  Ali I. Genç The generalized T Birnbaum–Saunders family , 2013 .

[20]  Gilberto A. Paula,et al.  Generalized Birnbaum‐Saunders distributions applied to air pollutant concentration , 2008 .

[21]  Heleno Bolfarine,et al.  Epsilon Birnbaum–Saunders distribution family: properties and inference , 2011 .

[22]  The Log-Kumaraswamy Generalized Gamma Regression Model with Application to Chemical Dependency Data , 2012, Journal of Data Science.

[23]  Peter K. Dunn,et al.  Randomized Quantile Residuals , 1996 .

[24]  Heleno Bolfarine,et al.  An extension of the generalized Birnbaum-Saunders distribution , 2009 .

[25]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[26]  Gauss M. Cordeiro,et al.  The beta-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling , 2011, Comput. Stat. Data Anal..

[27]  Víctor Leiva,et al.  A new class of survival regression models with heavy-tailed errors: robustness and diagnostics , 2008, Lifetime data analysis.

[28]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[29]  Z. Birnbaum,et al.  A new family of life distributions , 1969 .

[30]  James R. Rieck,et al.  A log-linear model for the Birnbaum-Saunders distribution , 1991 .

[31]  Heleno Bolfarine,et al.  The Log-exponentiated-Weibull Regression Models with Cure Rate: Local Influence and Residual Analysis , 2021, Journal of Data Science.

[32]  R. Rigby,et al.  Generalized Additive Models for Location Scale and Shape (GAMLSS) in R , 2007 .

[33]  R. Rigby,et al.  Generalized additive models for location, scale and shape , 2005 .

[34]  Vlasios Voudouris,et al.  Modelling skewness and kurtosis with the BCPE density in GAMLSS , 2012 .

[35]  Arjun K. Gupta,et al.  Elliptically contoured models in statistics , 1993 .