Ergodic Classical-Quantum Channels: Structure and Coding Theorems

In this paper, we consider ergodic causal classical-quantum channels (cq-channels) which additionally have a decaying input memory. In the first part, we develop some structural properties of ergodic cq-channels and provide equivalent conditions for ergodicity. In the second part, we prove the coding theorem with weak converse for causal ergodic cq-channels with decaying input memory. Our proof is based on the possibility to introduce a joint input-output state for the cq-channels and an application of the Shannon-McMillan theorem for ergodic quantum states. In the last part of the paper, it is shown how this result implies a coding theorem for the classical capacity of a class of causal ergodic quantum channels.

[1]  Suguru Arimoto,et al.  On the converse to the coding theorem for discrete memoryless channels (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[2]  P. Shor Equivalence of Additivity Questions in Quantum Information Theory , 2004 .

[3]  M. Sentís Quantum theory of open systems , 2002 .

[4]  Barry Simon,et al.  The statistical mechanics of lattice gases , 1993 .

[5]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[6]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[7]  Derek W. Robinson,et al.  Statistical mechanics of quantum spin systems. III , 1968 .

[8]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[9]  M. Horodecki,et al.  Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments , 2002 .

[10]  D. Blackwell,et al.  The Capacity of a Class of Channels , 1959 .

[11]  Robert M. Gray,et al.  The ergodic decomposition of stationary discrete random processes , 1974, IEEE Trans. Inf. Theory.

[12]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[13]  Derek W. Robinson,et al.  Mean Entropy of States in Quantum‐Statistical Mechanics , 1968 .

[14]  S. Mancini,et al.  Quantum channels with a finite memory , 2003, quant-ph/0305010.

[15]  Göran Lindblad,et al.  An entropy inequality for quantum measurements , 1972 .

[16]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[17]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[18]  Amiel Feinstein,et al.  A new basic theorem of information theory , 1954, Trans. IRE Prof. Group Inf. Theory.

[19]  R. Gray,et al.  Block coding for discrete stationary d -continuous noisy channels , 1979, IEEE Trans. Inf. Theory.

[20]  Nilanjana Datta,et al.  A quantum version of Feinstein's Theorem and its application to channel coding , 2006, 2006 IEEE International Symposium on Information Theory.

[21]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[22]  P. Shor Equivalence of Additivity Questions in Quantum Information Theory , 2003, quant-ph/0305035.

[23]  W. Stinespring Positive functions on *-algebras , 1955 .

[24]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  J. Wolfowitz Coding Theorems of Information Theory , 1962, Ergebnisse der Mathematik und Ihrer Grenzgebiete.

[27]  Igor Bjelakovic,et al.  The Shannon-McMillan theorem for ergodic quantum lattice systems , 2002, ArXiv.

[28]  B. McMillan The Basic Theorems of Information Theory , 1953 .

[29]  Martin Mathieu COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS (Cambridge Studies in Advanced Mathematics 78) , 2004 .

[30]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[31]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[32]  Derek W. Robinson,et al.  Statistical mechanics of quantum spin systems , 1967 .

[33]  R. Werner,et al.  Quantum channels with memory , 2005, quant-ph/0502106.

[34]  R. F. Werner Quantum Information Theory - an Invitation , 2001 .

[35]  C. Macchiavello,et al.  Entanglement-enhanced information transmission over a quantum channel with correlated noise , 2001, quant-ph/0107052.

[36]  P. Shields The Ergodic Theory of Discrete Sample Paths , 1996 .

[37]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[38]  D. Blackwell,et al.  Proof of Shannon's Transmission Theorem for Finite-State Indecomposable Channels , 1958 .

[39]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras, Volume II: Advanced Theory , 1997 .

[40]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[41]  Mark Fannes,et al.  Quantum Information, Communication, Computation and Cryptography , 2007 .

[42]  R. Adler Ergodic and mixing properties of infinite memory channels , 1961 .

[43]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .