Chapter XXI Using Action-Object Pairs as a Conceptual Framework for Transaction Log Analysis

In this chapter, we present the action-object pair approach as a conceptual framework for conducting transaction log analysis. We argue that there are two basic components in the interaction between the user and the system recorded in a transaction log, which are action and object. An action is a specific expression of the user. An object is a self-contained information object, the recipient of the action. These two components form one interaction set or an action-object pair. A series of action-object pairs represents the interaction session. The action-object pair approach provides a conceptual framework for the collection, analysis, and understanding of data from transaction logs. We believe that this approach can benefit system design by providing the organizing principle for implicit feedback and other interactions concerning the user and delivering, for example, personalized service to the user based on this feedback. Action-object pairs also provide a worthwhile approach to advance our theoretical and conceptual understanding of transaction log analysis as a research method.

[1]  David E. Millard,et al.  Adaptive hypermedia through contextualized open hypermedia structures , 2007, TOIS.

[2]  Shin-jeng Lin DESIGN SPACE OF PERSONALIZED INDEXING: ENHANCING SUCCESSIVE WEB SEARCHES FOR TRANSMUTING INFORMATION PROBLEMS , 2002 .

[3]  Xuehua Shen,et al.  Context-sensitive information retrieval using implicit feedback , 2005, SIGIR '05.

[4]  Amanda Spink,et al.  Real life, real users, and real needs: a study and analysis of user queries on the web , 2000, Inf. Process. Manag..

[5]  Bernard J. Jansen,et al.  esigning automated help using searcher system dialogues , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[6]  Amanda Spink,et al.  Interaction in information retrieval: selection and effectiveness of search terms , 1997 .

[7]  Bernard J. Jansen,et al.  Assisting the searcher: utilizing software agents for Web search systems , 2004, Internet Res..

[8]  Chris Buckley,et al.  Improving automatic query expansion , 1998, SIGIR '98.

[9]  Mounia Lalmas,et al.  A Framework for Investigating the Interaction in Information Retrieval , 1999, EJC.

[10]  Kristian J. Hammond The Sixth International Conference on Intelligent User Interfaces , 2002, AI Mag..

[11]  Nicholas J. Belkin,et al.  Display time as implicit feedback: understanding task effects , 2004, SIGIR '04.

[12]  Amanda Spink,et al.  Multitasking information behavior and information task switching: an exploratory study , 2004, J. Documentation.

[13]  Peter G. Anick Using terminological feedback for web search refinement: a log-based study , 2003, SIGIR.

[14]  Tefko Saracevic,et al.  The Stratified Model of Information Retrieval Interaction: Extension and Applications , 1997 .

[15]  Paul B. Kantor,et al.  Studying the Value of Library and Information Services. Part I: Establishing a Theoretical Framework. , 1997 .

[16]  Peter Brusilovsky,et al.  Methods and techniques of adaptive hypermedia , 1996, User Modeling and User-Adapted Interaction.

[17]  Martha M. Yee System design and cataloging meet the user: User interfaces to online public access catalogs , 1991 .

[18]  Nicholas J. Belkin,et al.  Reading time, scrolling and interaction: exploring implicit sources of user preferences for relevance feedback , 2001, Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.

[19]  Amanda Spink,et al.  Search engine personalization: An exploratory study , 2003, First Monday.

[20]  Bernard J. Jansen,et al.  Evaluating the effectiveness of and patterns of interactions with automated searching assistance , 2005, J. Assoc. Inf. Sci. Technol..

[21]  Kenneth R. Boff,et al.  Engineering data compendium : human perception and performance , 1988 .

[22]  Bernard J. Jansen,et al.  Seeking and implementing automated assistance during the search process , 2005, Inf. Process. Manag..

[23]  Mario Cannataro,et al.  A probabilistic adaptive hypermedia system , 2001, Proceedings International Conference on Information Technology: Coding and Computing.

[24]  Edward S. Proctor Boolean operators and the naïve end-user: Moving to AND , 2002 .

[25]  Paul Solomon,et al.  Looking for Information—A Survey of Research on Information Seeking, Needs, and Behavior , 2003, Information Retrieval.

[26]  Monika Henzinger,et al.  Analysis of a very large web search engine query log , 1999, SIGF.

[27]  Bernard J. Jansen,et al.  A review of web searching studies and a framework for future research , 2001 .

[28]  Paul B. Kantor,et al.  Studying the Value of Library and Information Services. Part I. Establishing a Theoretical Framework , 1997, J. Am. Soc. Inf. Sci..

[29]  Amanda Spink,et al.  How are we searching the World Wide Web? A comparison of nine search engine transaction logs , 2006, Inf. Process. Manag..

[30]  Amanda Spink,et al.  From E-Sex to E-Commerce: Web Search Changes , 2002, Computer.

[31]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[32]  Stefano Ceri,et al.  Model-driven development of context-aware Web applications , 2007, TOIT.

[33]  T. D. Wilson,et al.  Models in information behaviour research , 1999, J. Documentation.

[34]  Mark Claypool,et al.  Implicit interest indicators , 2001, IUI '01.

[35]  Janet M. Corrigan,et al.  Background and Methodology , 2000 .

[36]  Paul B. Kantor,et al.  A study of information seeking and retrieving. I. background and methodology , 1988 .

[37]  Joonho Lee,et al.  End user searching: A Web log analysis of NAVER, a Korean Web search engine , 2005 .

[38]  Peter Bruza,et al.  Interactive Internet search: keyword, directory and query reformulation mechanisms compared , 2000, SIGIR '00.

[39]  Mark Levene,et al.  Personalisation of Web Search , 2003, ITWP.

[40]  Susan T. Dumais Web experiments and test collections , 2002 .

[41]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[42]  Paul B. Kantor,et al.  Studying the value of library and information services. Part II. Methodology and taxonomy , 1997 .

[43]  Nicholas J. Belkin,et al.  Cases, scripts, and information-seeking strategies: On the design of interactive information retrieval systems , 1995 .

[44]  Bernard J. Jansen,et al.  Search log analysis: What it is, what's been done, how to do it , 2006 .

[45]  Tefko Saracevic,et al.  Modeling Interaction in Information Retrieval (IR): A Review and Proposal. , 1996 .

[46]  Peiling Wang,et al.  Mining longitudinal web queries: Trends and patterns , 2003, J. Assoc. Inf. Sci. Technol..

[47]  Marcia J. Bates,et al.  Where should the person stop and the information search interface start? , 1990, Inf. Process. Manag..

[48]  Phillip M. Hallam-Baker,et al.  Extended Log File Format , 1996, World Wide Web J..

[49]  Donna K. Harman,et al.  Relevance feedback revisited , 1992, SIGIR '92.

[50]  Douglas W. Oard,et al.  Modeling Information Content Using Observable Behavior , 2001 .

[51]  Susan Gauch,et al.  An Expert System for Automatic Query Reformation , 1993, J. Am. Soc. Inf. Sci..

[52]  Jude W. Shavlik,et al.  Learning users' interests by unobtrusively observing their normal behavior , 2000, IUI '00.

[53]  Ryen W. White,et al.  Comparing Explicit and Implicit Feedback Techniques for Web Retrieval: TREC-10 Interactive Track Report , 2001, TREC.

[54]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[55]  Nicholas J. Belkin,et al.  A case for interaction: a study of interactive information retrieval behavior and effectiveness , 1996, CHI.

[56]  Licia Calvi,et al.  AHA : a generic adaptive hypermedia system , 1998 .