CMOS 60-GHz and E-band Power Amplifiers and Transmitters
暂无分享,去创建一个
ion: from device modeling and circuit design strategy to advanced digital and mixed-signal architectures for highly efficient and linear power amplifiers New architectures for power amplifiers in the cellar and wireless connectivity covering detailed design methodologies and state-of-the-art performances Detailed design techniques, trade-off analysis and design examples for efficiency enhancement at power back-off and linear amplification for spectrally-efficient non-constant envelope modulations Extensive coverage of mm-Wave powergeneration techniques from the early days of the 60 GHz research to current state-of the-art reconfigurable, digital mm-Wave PA architectures Detailed analysis of power generation challenges in the higher mm-Wave and THz frequencies and novel technical solutions for a wide range for potential applications, including ultrafast wireless communication to sensing, imaging and spectroscopy Contributions from the world-class experts from both academia and industry mm-Wave Silicon Technology-Ali M. Niknejad 2008-01-03 This book compiles and presents the research results from the past five years in mm-wave Silicon circuits. This area has received a great deal of interest from the research community including several university and research groups. The book covers device modeling, circuit building blocks, phased array systems, and antennas and packaging. It focuses on the techniques that uniquely take advantage of the scale and integration offered by silicon based technologies. Millimeter Wave Wireless Communications-Theodore S. Rappaport 2014-09-18 The Definitive, Comprehensive Guide to Cutting-Edge Millimeter Wave Wireless Design “This is a great book on mmWave systems that covers many aspects of the technology targeted for beginners all the way to the advanced users. The authors are some of the most credible scholars I know of who are well respected by the industry. I highly recommend studying this book in detail.” —Ali Sadri, Ph.D., Sr. Director, Intel Corporation, MCG mmWave Standards and Advanced Technologies Millimeter wave (mmWave) is today's breakthrough frontier for emerging wireless mobile cellular networks, wireless local area networks, personal area networks, and vehicular communications. In the near future, mmWave products, systems, theories, and devices will come together to deliver mobile data rates thousands of times faster than today's existing cellular and WiFi networks. In Millimeter Wave Wireless Communications, four of the field's pioneers draw on their immense experience as researchers, entrepreneurs, inventors, and consultants, empowering engineers at all levels to succeed with mmWave. They deliver exceptionally clear and useful guidance for newcomers, as well as the first complete desk reference for design experts. The authors explain mmWave signal propagation, mmWave circuit design, antenna designs, communication theory, and current standards (including IEEE 802.15.3c, Wireless HD, and ECMA/WiMedia). They cover comprehensive mmWave wireless design issues, for 60 GHz and other mmWave bands, from channel to antenna to receiver, introducing emerging design techniques that will be invaluable for research engineers in both industry and academia. Topics include Fundamentals: communication theory, channel propagation, circuits, antennas, architectures, capabilities, and applications Digital communication: baseband signal/channel models, modulation, equalization, error control coding, multiple input multiple output (MIMO) principles, and hardware architectures Radio wave propagation characteristics: indoor and outdoor applications Antennas/antenna arrays, including on-chip and in-package antennas, fabrication, and packaging Analog circuit design: mmWave transistors, fabrication, and transceiver design approaches Baseband circuit design: multi–gigabit-per-second, high-fidelity DAC and ADC converters Physical layer: algorithmic choices, design considerations, and impairment solutions; and how to overcome clipping, quantization, and nonlinearity Higher-layer design: beam adaptation protocols, relaying, multimedia transmission, and multiband considerations 60 GHz standardization: IEEE 802.15.3c for WPAN, Wireless HD, ECMA-387, IEEE 802.11ad, Wireless Gigabit Alliance (WiGig) CMOSET 2008 Final Program-CMOS Emerging Technologies Research 2014-08-28 Final program for the CMOSET 2008 conference. Design and Modeling of Millimeter-wave CMOS Circuits for Wireless Transceivers-Ivan Chee-Hong Lai 2008-03-25 Design and Modeling of Millimeter-wave CMOS Circuits for Wireless Transceivers describes in detail some of the interesting developments in CMOS millimetre-wave circuit design. This includes the re-emergence of the slowwave technique used on passive devices, the license-free 60GHz band circuit blocks and a 76GHz voltagecontrolled oscillator suitable for vehicular radar applications. All circuit solutions described are suitable for digital CMOS technology. Digital CMOS technology developments driven by Moore’s law make it an inevitable solution for low cost and high volume products in the marketplace. Explosion of the consumer wireless applications further makes this subject a hot topic of the day. The book begins with a brief history of millimetre-wave research and how the silicon transistor is born. Originally meant for different purposes, the two technologies converged and found its way into advanced chip designs. The second part of the book describes the most important passive devices used in millimetre-wave CMOS circuits. Part three uses these passive devices and builds circuit blocks for the wireless transceiver. The book completes with a comprehensive list of references for further readings. Design and Modeling of Millimeter-wave CMOS Circuits for Wireless Transceivers is useful to show the analogue IC designer the issues involved in making the leap to millimetre-wave circuit designs. The graduate student and researcher can also use it as a starting point to understand the subject or proceed to innovative from the works described herein. Ultra-Wideband and 60 GHz Communications for Biomedical Applications-Mehmet R. Yuce 2013-10-16 This book investigates the design of devices, systems, and circuits for medical applications using the two recently established frequency bands: ultra-wideband (3.1-10.6 GHz) and 60 GHz ISM band. These two bands provide the largest bandwidths available for communication technologies and present many attractive opportunities for medical applications. The applications of these bands in healthcare are wireless body area network (WBAN), medical imaging, biomedical sensing, wearable and implantable devices, fast medical device connectivity, video data transmission, and vital signs monitoring. The recent technological advances and developments proposed or used in medicine based on these two bands are covered. The book introduces possible solutions and design techniques to efficiently implement these systems in medical environment. All individual chapters are written by leading experts in their fields. Contributions by authors are on various applications of ultra-wideband and the 60 GHz ISM band including circuit implementation, UWB and 60 GHz signal transmission around and in-body, antenna design solution, hardware implementation of body sensors, UWB transceiver design, 60 GHz transceiver design, UWB radar for contactless respiratory monitoring, and ultra-wideband based medical Imaging. The book will be a key resource for medical professionals, bio-medical engineers, and graduate and senior undergraduate students in computer, electrical, electronic and biomedical engineering disciplines. Millimeter Wave Communication Systems-Kao-Cheng Huang 2011-04-20 The aim of this book is to present the modern design and analysis principles of millimeter-wave communication system for wireless devices and to give postgraduates and system professionals the design insights and challenges when integrating millimeter wave personal communication system. Millimeter wave communication system are going to play key roles in modern gigabit wireless communication area as millimeter-wave industrial standards from IEEE, European Computer Manufacturing Association (ECMA) and Wireless High Definition (Wireless HD) Group, are on their way to the market. The book will review up-to-date research results and utilize numerous design and analysis for the whole system covering from Millimeter wave frontend to digital signal processing in order to address major topics in a high speed wireless system. This book emphasizes the importance and the requirements of high-gain antennas, low power transceiver, adaptive equalizer/modulation, channeling coding and adaptive multi-user detection for gigabit wireless communications. In addition, the book will include the updated research literature and patents in the topics of transceivers, antennas, MIMO, channel capacity, coding, equalizer, Modem and multi-user detection. Finally the application of these antennas will be discussed in light of different forthcoming wireless standards at V-band and E-band. Handbook of Antenna Technologies-Zhi Ning Chen 2021-01-14 The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level