Pelletized Cu-Ni/CePr5 catalysts for H2 purification via Water Gas Shift reaction

[1]  D. Kovacheva,et al.  Water–gas shift reaction over gold deposited on NiAl layered double hydroxides , 2019, Reaction Kinetics, Mechanisms and Catalysis.

[2]  M. Schmal,et al.  A catalyst selection method for hydrogen production through Water-Gas Shift Reaction using artificial neural networks. , 2019, Journal of environmental management.

[3]  R. Zanella,et al.  Structure-activity relationship in water-gas shift reaction over gold catalysts supported on Y-doped ceria , 2019, Journal of Rare Earths.

[4]  T. Reina,et al.  Bimetallic Cu–Ni catalysts for the WGS reaction – Cooperative or uncooperative effect? , 2019, International Journal of Hydrogen Energy.

[5]  L. Alemany,et al.  Insight into Ni/Ce1−xZrxO2−δ support interplay for enhanced methane steam reforming , 2019, International Journal of Hydrogen Energy.

[6]  Lixin Sun,et al.  Solubility Limit of Cu and Factors Governing the Reactivity of Cu–CeO2 Assessed from First-Principles Defect Chemistry and Thermodynamics , 2018, The Journal of Physical Chemistry C.

[7]  M. V. Ganduglia-Pirovano,et al.  Single Ni Sites Supported on CeO2(111) Reveal Cooperative Effects in the Water–Gas Shift Reaction , 2018, Journal of Physical Chemistry C.

[8]  S. Kawi,et al.  Preparation of highly dispersed Cu/SiO2 doped with CeO2 and its application for high temperature water gas shift reaction , 2018, International Journal of Hydrogen Energy.

[9]  Eduardo Poggio-Fraccari,et al.  Low-Cost Catalysts for the Water Gas Shift Reaction Based on Cu-Ni on La-Promoted Ceria , 2018, European Journal of Inorganic Chemistry.

[10]  Kingkaew Chayakul Chanapattharapol,et al.  Preparation and characterization of Ce1−xPrxO2 supports and their catalytic activities , 2017 .

[11]  P. Smirniotis,et al.  High-temperature water-gas shift over Fe/Ce/Co spinel catalysts: Study of the promotional effect of Ce and Co , 2017 .

[12]  F. Yu,et al.  Natural gas reforming of carbon dioxide for syngas over Ni–Ce–Al catalysts , 2017 .

[13]  Eduardo Poggio-Fraccari,et al.  Cu and/or Ni catalysts over CePr oxide for the water gas shift reaction: an experimental study, kinetic fitting and reactor simulation , 2017, Reaction Kinetics, Mechanisms and Catalysis.

[14]  S. Kawi,et al.  High-temperature water gas shift reaction on Ni–Cu/CeO2 catalysts: effect of ceria nanocrystal size on carboxylate formation , 2016 .

[15]  W. Ying,et al.  Ni–Ce–Al composite oxide catalysts synthesized by solution combustion method: Enhanced catalytic activity for CO methanation , 2015 .

[16]  A. Martínez-Arias,et al.  Role of the Interface in Base‐Metal Ceria‐Based Catalysts for Hydrogen Purification and Production Processes , 2015 .

[17]  K. Hidajat,et al.  Highly Active and Stable Bimetallic Nickel–Copper Core–Ceria Shell Catalyst for High‐Temperature Water–Gas Shift Reaction , 2015 .

[18]  M. Laborde,et al.  Egg-shell CuO/CeO2/Al2O3 catalysts for CO preferential oxidation , 2015 .

[19]  Hyun-Seog Roh,et al.  Hydrogen production from water–gas shift reaction over Ni–Cu–CeO2 oxide catalyst: The effect of preparation methods , 2015 .

[20]  T. Reina,et al.  Mono and bimetallic Cu-Ni structured catalysts for the water gas shift reaction , 2015 .

[21]  Maohong Fan,et al.  The progress in water gas shift and steam reforming hydrogen production technologies – A review , 2014 .

[22]  Tiefeng Wang,et al.  Effects of oxide supports on the water-gas shift reaction over PtNi bimetallic catalysts: Activity and methanation inhibition , 2014 .

[23]  Eduardo Poggio-Fraccari,et al.  Ce-Pr mixed oxides as active supports for Water-gas Shift reaction: Experimental and density functional theory characterization , 2014 .

[24]  D. Weng,et al.  Structure and oxygen storage capacity of Pd/Pr/CeO2-ZrO2 catalyst: effects of impregnated praseodymia , 2014 .

[25]  M. Soria,et al.  Effect of the preparation method on the catalytic activity and stability of Au/Fe2O3 catalysts in the low-temperature water–gas shift reaction , 2014 .

[26]  M. Laborde,et al.  Copper and nickel catalysts supported on praseodymium-doped ceria (PDC) for the water-gas shift reaction , 2013 .

[27]  A. M. Efstathiou,et al.  The effect of La3+-doping of CeO2 support on the water-gas shift reaction mechanism and kinetics over Pt/Ce1−xLaxO2−δ , 2013 .

[28]  G. Madras,et al.  Water gas shift reaction over multi-component ceria catalysts , 2012 .

[29]  M. Jobbágy,et al.  Influence of the calcination temperature on the structure and reducibility of nanoceria obtained from crystalline Ce(OH)CO3 precursor , 2011 .

[30]  A. Z. Moghaddam,et al.  The influence of nickel loading on reducibility of NiO/Al 2 O 3 catalysts synthesized by sol-gel method , 2010 .

[31]  S. Misture,et al.  Hydrogen production by water–gas shift reaction over bimetallic Cu–Ni catalysts supported on La-doped mesoporous ceria , 2010 .

[32]  Jonghee Han,et al.  SiO2/Ni and CeO2/Ni catalysts for single-stage water gas shift reaction , 2010 .

[33]  J. Fierro,et al.  A Comparative Study of the Water Gas Shift Reaction Over Platinum Catalysts Supported on CeO2, TiO2 and Ce-Modified TiO2 , 2010 .

[34]  J. Wagner,et al.  Water Gas Shift Catalysis , 2009 .

[35]  J. Levec,et al.  Effect of structural and acidity/basicity changes of CuO–CeO2 catalysts on their activity for water–gas shift reaction , 2008 .

[36]  Shaoxing Zhang,et al.  Reverse water gas shift reaction over Co-precipitated Ni-CeO2 catalysts , 2008 .

[37]  Robert J. Farrauto,et al.  Kinetics of the water-gas shift reaction on Pt catalysts supported on alumina and ceria , 2007 .

[38]  A. Pintar,et al.  Nanostructured Cu(x)Ce1-xO2-y mixed oxide catalysts: characterization and WGS activity tests. , 2007, Journal of colloid and interface science.

[39]  A. Guerrero-Ruíz,et al.  Study of CO chemisorption on graphite-supported Ru–Cu and Ni–Cu bimetallic catalysts , 2005 .

[40]  Lanny D. Schmidt,et al.  The water-gas-shift reaction at short contact times , 2004 .

[41]  M. Flytzani-Stephanopoulos,et al.  Activity and Stability of Cu−CeO2 Catalysts in High-Temperature Water−Gas Shift for Fuel-Cell Applications , 2004 .

[42]  G. Jacobs,et al.  Water-gas shift: comparative screening of metal promoters for metal/ceria systems and role of the metal , 2004 .

[43]  J. Otomo,et al.  Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique , 2003 .

[44]  M. Schmal,et al.  Characterization of ceria-coated alumina carrier , 2002 .

[45]  Raymond J. Gorte,et al.  A comparative study of water-gas-shift reaction over ceria supported metallic catalysts , 2001 .

[46]  Maria Flytzani-Stephanopoulos,et al.  Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts , 2000 .

[47]  W. Spicer,et al.  Thermal desorption studies of CO and H2 from the CuNi alloy , 1976 .

[48]  Eduardo Poggio-Fraccari,et al.  Pr3+ surface fraction in CePr mixed oxides determined by XPS analysis , 2018 .

[49]  M. A. Gutiérrez-Ortiz,et al.  Transition metals supported on bone-derived hydroxyapatite as potential catalysts for the Water-Gas Shift reaction , 2018 .

[50]  F. Seridi,et al.  Structural study of radiolytic catalysts Ni-Ce/Al 2 O 3 and Ni-Pt/Al 2 O 3 , 2017 .