Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region

Abstract• The performance of ten commonly used taper equations for predicting both stem form and volume in balsam fir [Abies balsamea (L.) Mill], red spruce[Picea rubens (Sarg.)], and white pine[Pinus strobus (L.)] in the Acadian Region of North America was investigated.• Results show that the Kozak (2004) and Bi (2000) equations were superior to the other equations in predicting diameter inside bark for red spruce and white pine, while the Valentine and Gregoire (2001) equation performed slightly better for balsam fir.• For stem volume, the Clark et al. (1991) equation provided the best predictions across all species when upper stem diameter measurements were available, while the Kozak (2004) and compatible taper equation of Fang et al. (2000) performed well when those measurements were unavailable.• The incorporation of crown variables substantially improved stem volume predictions (mean absolute bias reduction of 7–15%; root mean square error reduction of 10–15%) for all three species, but had little impact on stem form predictions.• The best taper equation reduced the predicted root mean square error by 16, 39, and 45% compared to estimates from the widely used Honer (1965) regional stem volume equations for balsam fir, red spruce, and white pine, respectively.• When multiple taper equations exist for a certain species, the use of the geometric mean of all predictions is an attractive alternative to selecting the “best” equation.Résumé• Les performances de dix équations de la décroissance de la tige, couramment utilisées pour prédire à la fois la forme du tronc et le volume pour le sapin baumier [Abies balsamea (L.) Mill], l’Épinette rouge [Picea rubens (Sarg.)], et le pin Weymouth [Pinus strobus (L.)] ont été étudiées dans la région de l’Acadie en Amérique du Nord.• Les résultats montrent que les équations de Kozak (2004) et de Bi (2000) étaient supérieures aux autres équations pour la prédiction du diamètre sous écorce pour l’épinette rouge et le pin Weymouth, tandis que l’équation de Valentine et Gregoire (2001) était légèrement meilleure pour la forme du tronc du sapin baumier.• Pour le volume de la tige, l’équation de Clark et al. (1991) fourni les meilleures prévisions pour toutes les espèces lorsque les mesures du diamètre de la partie supérieure de la tige étaient disponibles, tandis que l’équation de Kozak (2004) et l’équation compatible de défilement de Fang et al. (2000) conviennent bien lorsque ces mesures n’étaient pas disponibles.• L’incorporation de variables de couronne a amélioré sensiblement les prédictions du volume des troncs (réduction moyenne des biais absolu de 7–15 % ; réduction de l’erreur quadratique moyenne de 10–15 %) pour les trois espèces, mais avait peu d’impact sur les prédictions de la forme du tronc.• La meilleure équation de décroissance a réduit l’estimation de l’erreur quadratique moyenne de 16, 39, et 45 % par rapport aux estimations largement utilisées avec les équations régionales d’Honer (1965) pour l’estimation du volume de la tige respectivement pour le sapin baumier, l’épinette rouge et le pin Weymouth.• Lorsque plusieurs équations de défilement existent pour certaines espèces, l’utilisation de la moyenne géométrique de toutes les prédictions est une alternative intéressante pour la sélection de la “meilleure” équation.

[1]  J. H. Smith,et al.  Taper Functions and their Application in Forest Inventory , 1969 .

[2]  L. Gu,et al.  Crown structure and growth efficiency of red spruce in uneven-aged, mixed-species stands in Maine , 1998 .

[3]  P. Larson Stem Form Development of Forest Trees , 1963 .

[4]  Bernard R. Parresol,et al.  Simple, flexible, trigonometric taper equations , 1991 .

[5]  Leah M. Phillips Crop Tree Growth and Quality Twenty-five Years after Precommercial Thinning in a Northern Conifer Stand , 2002 .

[6]  R. Bailey,et al.  Compatible Volume-Taper Models for Loblolly and Slash Pine Based on a System with Segmented-Stem Form Factors , 2000, Forest Science.

[7]  R. Bailey,et al.  Derivation, fitting, and implication of a compatible stem taper-volume-weight system for intensively managed, fast growing loblolly pine , 2002 .

[8]  Mahadev Sharma,et al.  Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis. , 2009 .

[9]  S. Zhang,et al.  Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada , 2004 .

[10]  D. Maguire,et al.  Sapwood taper models and implied sapwood volume and foliage profiles for coastal Douglas-fir , 1996 .

[11]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[12]  V. Lemay,et al.  Effects of adding tree, stand, and site variables to Kozak's variable-exponent taper equation , 1994 .

[13]  A. Kozak,et al.  A variable-exponent taper equation , 1988 .

[14]  R. Briggs,et al.  Delineation of climatic regions in Maine , 1992 .

[15]  K. Rennolls,et al.  Timber Management-A Quantitative Approach. , 1984 .

[16]  U. Diéguez-Aranda,et al.  A merchantable volume system for major pine species in El Salto, Durango (Mexico) , 2007 .

[17]  Douglas A. Maguire,et al.  Modeling stem taper of three central Oregon species using nonlinear mixed effects models and autoregressive error structures , 2003 .

[18]  Quang V. Cao,et al.  Use of crown ratio to improve loblolly pine taper equations , 1986 .

[19]  D. Gilmore,et al.  Alternative measures of stem growth efficiency applied to Abies balsamea from four canopy positions in central Maine, USA , 1996 .

[20]  David K. Walters,et al.  Taper equations for six conifer species in southwest Oregon , 1986 .

[21]  T. Gregoire,et al.  A switching model of bole taper , 2001 .

[22]  H. Burkhart,et al.  Incorporating crown ratio into taper equations for loblolly pine trees , 1985 .

[23]  J. H. Smith,et al.  Standards for evaluating taper estimating systems , 1993 .

[24]  G. Somers,et al.  A Tree Taper Model Based on Similar Triangles and Use of Crown Ratio as a Measure of Form in Taper Equations for Longleaf Pine , 2003 .

[25]  U. Diéguez-Aranda,et al.  Compatible taper function for Scots pine plantations in northwestern Spain , 2006 .

[26]  D. Pitt,et al.  Long-term outcome of precommercial thinning in northwestern New Brunswick: growth and yield of balsam fir and red spruce , 2008 .

[27]  Marie Davidian,et al.  Nonlinear Models for Repeated Measurement Data , 1995 .

[28]  Harold E. Burkhart,et al.  Segmented Polynomial Regression Applied to Taper Equations , 1976 .

[29]  Lichun Jiang,et al.  Using Crown Ratio in Yellow-Poplar Compatible Taper and Volume Equations , 2007 .

[30]  Bryce E. Schlaegel,et al.  Stem Profile for Southern Equations for Southern Tree Species , 1991 .

[31]  T. Honer A NEW TOTAL CUBIC FOOT VOLUME FUNCTION , 1965 .

[32]  Harold E. Burkhart,et al.  A Generalized Approach for Modeling and Localizing Stem Profile Curves , 2006 .

[33]  A. Robinson,et al.  Improving Taper Equations of Loblolly Pine with Crown Dimensions in a Mixed-Effects Modeling Framework , 2004, Forest Science.

[34]  W. Zakrzewski A Mathematically Tractable Stem Profile Model for Jack Pine in Ontario , 1999 .

[35]  A. F. Filho,et al.  Comparison between predicted volumes estimated by taper equations and true volumes obtained by the water displacement technique (xylometer) , 1999 .

[36]  Effects of upper stem measurements on the predictive ability of a variable-exponent taper equation , 1998 .

[37]  Juha Lappi,et al.  A multivariate, nonparametric stem-curve prediction method , 2006 .

[38]  Timothy G. Gregoire,et al.  Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements , 1995 .

[39]  Huiquan Bi,et al.  Trigonometric Variable-Form Taper Equations for Australian Eucalypts , 2000, Forest Science.

[40]  A. Weiskittel,et al.  Long-term effects of precommercial thinning on stem form, volume, and branch characteristics of red spruce and balsam fir crop trees , 2009 .

[41]  G. Reinsel,et al.  Models for Longitudinal Data with Random Effects and AR(1) Errors , 1989 .

[42]  K. von Gadow,et al.  Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain) , 2005, European Journal of Forest Research.

[43]  R. Özçelik Comparison of formulae for estimating tree bole volumes of Pinus sylvestris , 2008 .

[44]  A. Kozak,et al.  My last words on taper equations , 2004 .

[45]  S. Sader,et al.  The forests of Maine: 2003 , 2005 .