Biochemical and Structural Characterization of TesA, a Major Thioesterase Required for Outer-Envelope Lipid Biosynthesis in Mycobacterium tuberculosis.

[1]  D. Hung,et al.  The Expanding Diversity of Mycobacterium tuberculosis Drug Targets. , 2018, ACS infectious diseases.

[2]  R. Miggiano,et al.  Mycobacterium tuberculosis Molecular Determinants of Infection, Survival Strategies, and Vulnerable Targets , 2018, Pathogens.

[3]  N. Sampson,et al.  Hit Generation in TB Drug Discovery: From Genome to Granuloma , 2018, Chemical reviews.

[4]  L. Kremer,et al.  Cyclipostins and cyclophostin analogs inhibit the antigen 85C from Mycobacterium tuberculosis both in vitro and in vivo , 2018, The Journal of Biological Chemistry.

[5]  L. Kremer,et al.  Cyclophostin and Cyclipostins analogues, new promising molecules to treat mycobacterial-related diseases. , 2017, International journal of antimicrobial agents.

[6]  L. Kremer,et al.  Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis , 2017, Scientific Reports.

[7]  Lisa K. Woolhiser,et al.  Development of a Novel Lead that Targets M. tuberculosis Polyketide Synthase 13 , 2017, Cell.

[8]  Faez Iqbal Khan,et al.  The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties , 2017, Front. Bioeng. Biotechnol..

[9]  Natalie C. Sadler,et al.  Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence. , 2016, Cell chemical biology.

[10]  L. Quadri,et al.  Pleiotropic consequences of gene knockouts in the phthiocerol dimycocerosate and phenolic glycolipid biosynthetic gene cluster of the opportunistic human pathogen Mycobacterium marinum. , 2016, FEMS microbiology letters.

[11]  C. M. Dupureur,et al.  Synthesis and comparison of the biological activity of monocyclic phosphonate, difluorophosphonate and phosphate analogs of the natural AChE inhibitor cyclophostin. , 2015, Bioorganic & medicinal chemistry.

[12]  C. M. Dupureur,et al.  Rat hormone sensitive lipase inhibition by cyclipostins and their analogs. , 2015, Bioorganic & medicinal chemistry.

[13]  M. Jackson The mycobacterial cell envelope-lipids. , 2014, Cold Spring Harbor perspectives in medicine.

[14]  A. Cazenave-Gassiot,et al.  Targeting Lipid Esterases in Mycobacteria Grown Under Different Physiological Conditions Using Activity-based Profiling with Tetrahydrolipstatin (THL)* , 2013, Molecular & Cellular Proteomics.

[15]  K. Holt,et al.  Out-of-Africa migration and Neolithic co-expansion of Mycobacterium tuberculosis with modern humans , 2013, Nature Genetics.

[16]  K. Jaeger,et al.  Structural and Functional Characterisation of TesA - A Novel Lysophospholipase A from Pseudomonas aeruginosa , 2013, PloS one.

[17]  F. Carrière,et al.  Enantioselective inhibition of microbial lipolytic enzymes by nonracemic monocyclic enolphosphonate analogues of cyclophostin. , 2013, Journal of medicinal chemistry.

[18]  Alimuddin Zumla,et al.  Advances in the development of new tuberculosis drugs and treatment regimens , 2013, Nature Reviews Drug Discovery.

[19]  F. Carrière,et al.  Synthesis and kinetic evaluation of cyclophostin and cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases. , 2012, Journal of medicinal chemistry.

[20]  Julien Leclaire,et al.  MmPPOX Inhibits Mycobacterium tuberculosis Lipolytic Enzymes Belonging to the Hormone-Sensitive Lipase Family and Alters Mycobacterial Growth , 2012, PloS one.

[21]  Garib N. Murshudov,et al.  JLigand: a graphical tool for the CCP4 template-restraint library , 2012, Acta crystallographica. Section D, Biological crystallography.

[22]  Peter J. Stuckey,et al.  Automatic generation of protein structure cartoons with Pro-origami , 2011, Bioinform..

[23]  Thomas R. Ioerger,et al.  High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism , 2011, PLoS pathogens.

[24]  G. D. de Souza,et al.  A proteomic view of mycobacteria , 2011, Proteomics.

[25]  Shaneen Singh,et al.  Inactivation of tesA Reduces Cell Wall Lipid Production and Increases Drug Susceptibility in Mycobacteria* , 2011, The Journal of Biological Chemistry.

[26]  L. Kremer,et al.  A Mycobacterium marinum TesA mutant defective for major cell wall‐associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos , 2011, Molecular microbiology.

[27]  F. Fotiadu,et al.  Effects of Surfactants on Lipase Structure, Activity, and Inhibition , 2011, Pharmaceutical Research.

[28]  T. Beddoe,et al.  Tetrahydrolipstatin Inhibition, Functional Analyses, and Three-dimensional Structure of a Lipase Essential for Mycobacterial Viability* , 2010, The Journal of Biological Chemistry.

[29]  G. Lambeau,et al.  Two cutinase‐like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[31]  D. Ollis,et al.  α/βHydrolase Fold: An Update , 2009 .

[32]  D. van Soolingen,et al.  A Lipid Profile Typifies the Beijing Strains of Mycobacterium tuberculosis , 2009, The Journal of Biological Chemistry.

[33]  Janet L. Smith,et al.  Structure and Functional Analysis of RifR, the Type II Thioesterase from the Rifamycin Biosynthetic Pathway* , 2009, Journal of Biological Chemistry.

[34]  André Lopez,et al.  Phthiocerol Dimycocerosates of M. tuberculosis Participate in Macrophage Invasion by Inducing Changes in the Organization of Plasma Membrane Lipids , 2009, PLoS pathogens.

[35]  M. Vasil,et al.  Mycobacterium tuberculosis Rv3802c Encodes a Phospholipase/Thioesterase and Is Inhibited by the Antimycobacterial Agent Tetrahydrolipstatin , 2009, PloS one.

[36]  E. Rubin,et al.  Bacterial Growth and Cell Division: a Mycobacterial Perspective , 2008, Microbiology and Molecular Biology Reviews.

[37]  B. Sapkota,et al.  Role of PGL-I of M. leprae in TNF-alpha production by in vitro whole blood assay. , 2008, Nepal Medical College journal : NMCJ.

[38]  G. Sciara,et al.  A Topological Model of the Baseplate of Lactococcal Phage Tuc2009* , 2008, Journal of Biological Chemistry.

[39]  Derek S. Tan,et al.  Mycobacterial phenolic glycolipid virulence factor biosynthesis: mechanism and small-molecule inhibition of polyketide chain initiation. , 2008, Chemistry & biology.

[40]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[41]  F. Carrière,et al.  Effect of nonionic surfactants on Rhizopus homothallicus lipase activity , 2007, Molecular biotechnology.

[42]  F. Carrière,et al.  Exploring the specific features of interfacial enzymology based on lipase studies. , 2006, Biochimica et biophysica acta.

[43]  D. Minnikin,et al.  Inactivation of polyketide synthase and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv , 2005, Letters in applied microbiology.

[44]  G. Bricogne,et al.  Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. , 2004, Acta crystallographica. Section D, Biological crystallography.

[45]  A. Ranganathan,et al.  Interaction studies on proteins encoded by the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis , 2004, Molecular Genetics and Genomics.

[46]  M. Reed,et al.  A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response , 2004, Nature.

[47]  E. Bradbury,et al.  Comprehensive Proteomic Profiling of the Membrane Constituents of a Mycobacterium tuberculosis Strain*S , 2003, Molecular & Cellular Proteomics.

[48]  R. Verger,et al.  Inhibition of dog and human gastric lipases by enantiomeric phosphonate inhibitors: a structure-activity study. , 2003, Biochemistry.

[49]  M. Daffé,et al.  Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. , 2002, The Journal of biological chemistry.

[50]  L. Sarda,et al.  Distinction between esterases and lipases: A kinetic study with vinyl esters and TAG , 2002, Lipids.

[51]  P. Berna,et al.  Crystal Structure of the Open Form of Dog Gastric Lipase in Complex with a Phosphonate Inhibitor* , 2002, The Journal of Biological Chemistry.

[52]  B. Gicquel,et al.  Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. , 2001, The Journal of biological chemistry.

[53]  H. Eickhoff,et al.  Development of a technology for automation and miniaturization of protein crystallization. , 2001, Journal of biotechnology.

[54]  B. Cravatt,et al.  Activity-based protein profiling: the serine hydrolases. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[55]  R. Verger,et al.  Crystal Structure of Human Gastric Lipase and Model of Lysosomal Acid Lipase, Two Lipolytic Enzymes of Medical Interest* , 1999, The Journal of Biological Chemistry.

[56]  B. Gicquel,et al.  Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope , 1999, Molecular microbiology.

[57]  G. Besra,et al.  Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. , 1997, Science.

[58]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[59]  C Cambillau,et al.  Cutinase, a lipolytic enzyme with a preformed oxyanion hole. , 1994, Biochemistry.

[60]  P. Højrup,et al.  Rapid identification of proteins by peptide-mass fingerprinting , 1993, Current Biology.

[61]  H. Tilbeurgh,et al.  Interfacial activation of the lipase–procolipase complex by mixed micelles revealed by X-ray crystallography , 1993, Nature.

[62]  R. Verger,et al.  Competitive inhibition of lipolytic enzymes. I. A kinetic model applicable to water-insoluble competitive inhibitors. , 1990, Biochimica et biophysica acta.

[63]  M. Daffé,et al.  Structure of the major triglycosyl phenol-phthiocerol of Mycobacterium tuberculosis (strain Canetti). , 1987, European journal of biochemistry.

[64]  F. Carrière,et al.  New lipase assay using Pomegranate oil coating in microtiter plates. , 2016, Biochimie.

[65]  P. Afonine,et al.  research papers Acta Crystallographica Section D Biological , 2003 .

[66]  Vincent B. Chen,et al.  Acta Crystallographica Section D Biological , 2001 .

[67]  R. Verger,et al.  Interfacial enzyme kinetics of lipolysis. , 1976, Annual review of biophysics and bioengineering.