Analytic gradient for the adaptive frozen orbital bond detachment in the fragment molecular orbital method

We have developed and implemented the analytic energy gradient for the bond detachment scheme in the fragment molecular orbital method (FMO) suitable to describe solids, and applied it to the geometry optimization of a silicon nanowire at several levels of theory. In addition, we have examined in detail the effects of the particular choice of the fragmentation upon the accuracy and introduced a number of numerical criteria to characterize the errors. The established route is expected to provide guidance for future applications of FMO to surfaces, solids and nanosystems.

[1]  Toru Inaba,et al.  Development of parallel density functional program using distributed matrix to calculate all‐electron canonical wavefunction of large molecules , 2007, J. Comput. Chem..

[2]  Vladimir B. Sulimov,et al.  Semiempirical calculations of binding enthalpy for protein-ligand complexes , 2004 .

[3]  Jan H. Jensen,et al.  Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method. , 2008, The journal of physical chemistry. A.

[4]  Yuriko Aoki,et al.  Absorption spectra of estradiol and tryptophan constructed by the statistical and elongation methods. , 2009, The journal of physical chemistry. A.

[5]  Larson,et al.  Ab initio theory of the Si(111)-(7 x 7) surface reconstruction: A challenge for massively parallel computation. , 1992, Physical review letters.

[6]  Yuto Komeiji,et al.  Fragment molecular orbital-based molecular dynamics (FMO-MD), a quantum simulation tool for large molecular systems , 2009 .

[7]  Kimihiko Hirao,et al.  An approximate second-order Møller–Plesset perturbation approach for large molecular calculations , 2006 .

[8]  Kazuo Kitaura,et al.  Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[9]  Lucas Visscher,et al.  A subsystem density-functional theory approach for the quantum chemical treatment of proteins. , 2008, The Journal of chemical physics.

[10]  P. Sorokin,et al.  Density functional study of ⟨110⟩ -oriented thin silicon nanowires , 2008 .

[11]  Yi Luo,et al.  An elongation method for first principle simulations of electronic structures and electron transport properties of finite nanostructures. , 2006, The Journal of chemical physics.

[12]  C. Hubbard,et al.  A silicon powder diffraction standard reference material , 1975 .

[13]  Kenneth M. Merz,et al.  Importance of dispersion and electron correlation in ab initio protein folding. , 2009, The journal of physical chemistry. B.

[14]  Kazuo Kitaura,et al.  The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems , 2009 .

[15]  Kazuo Kitaura,et al.  Coupled-cluster theory based upon the fragment molecular-orbital method. , 2005, The Journal of chemical physics.

[16]  Kazuo Kitaura,et al.  Derivatives of the approximated electrostatic potentials in the fragment molecular orbital method , 2009 .

[17]  D. Chadi,et al.  Atomic and Electronic Structures of Reconstructed Si(100) Surfaces , 1979 .

[18]  L. Chernozatonskii,et al.  Atypical quantum confinement effect in silicon nanowires. , 2008, The journal of physical chemistry. A.

[19]  Kazuo Kitaura,et al.  Pair interaction energy decomposition analysis , 2007, J. Comput. Chem..

[20]  Donald G Truhlar,et al.  Evaluation of the Electrostatically Embedded Many-Body Expansion and the Electrostatically Embedded Many-Body Expansion of the Correlation Energy by Application to Low-Lying Water Hexamers. , 2008, Journal of chemical theory and computation.

[21]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.

[22]  Wei Li,et al.  Geometry optimizations and vibrational spectra of large molecules from a generalized energy-based fragmentation approach. , 2008, The journal of physical chemistry. A.

[23]  Yuto Komeiji,et al.  Fragment molecular orbital method: analytical energy gradients , 2001 .

[24]  Mark S. Gordon,et al.  A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) , 2004, J. Comput. Chem..

[25]  Takeshi Ishikawa,et al.  Fragment molecular orbital calculations on red fluorescent proteins (DsRed and mFruits). , 2009, The journal of physical chemistry. B.

[26]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[27]  Kazuo Kitaura,et al.  Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. , 2007, The journal of physical chemistry. A.

[28]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[29]  Kazuo Kitaura,et al.  The importance of three-body terms in the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[30]  A. Williamson,et al.  First principles simulations of the structural and electronic properties of silicon nanowires , 2006 .

[31]  P. Eklund,et al.  Electronic properties of semiconductor nanowires. , 2008, Journal of nanoscience and nanotechnology.

[32]  Heinrich Rohrer,et al.  7 × 7 Reconstruction on Si(111) Resolved in Real Space , 1983 .

[33]  Kiyoyuki Terakura,et al.  Molecular orbital calculation of biomolecules with fragment molecular orbitals , 2009 .

[34]  Pär Söderhjelm,et al.  How accurate can a force field become? A polarizable multipole model combined with fragment-wise quantum-mechanical calculations. , 2009, The journal of physical chemistry. A.

[35]  Kaori Fukuzawa,et al.  A configuration analysis for fragment interaction , 2005 .

[36]  Anuja P. Rahalkar,et al.  Enabling ab initio Hessian and frequency calculations of large molecules. , 2008, The Journal of chemical physics.

[37]  Marat Valiev,et al.  Fast electron correlation methods for molecular clusters without basis set superposition errors. , 2008, The Journal of chemical physics.

[38]  Kazuo Kitaura,et al.  On the accuracy of the 3-body fragment molecular orbital method (FMO) applied to density functional theory , 2004 .

[39]  Boon K. Teo,et al.  Doing chemistry on low-dimensional silicon surfaces: silicon nanowires as platforms and templates , 2003 .

[40]  K. Kitaura,et al.  Excited state geometry optimizations by time-dependent density functional theory based on the fragment molecular orbital method , 2009 .

[41]  Masami Uebayasi,et al.  The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. , 2007, The journal of physical chemistry. A.

[42]  Mika Ito,et al.  Ab initio quantum-chemical study on emission spectra of bioluminescent luciferases by fragment molecular orbital method , 2009 .

[43]  Yuji Mochizuki,et al.  Configuration interaction singles method with multilayer fragment molecular orbital scheme , 2005 .

[44]  Lou Massa,et al.  The kernel energy method of quantum mechanical approximation carried to fourth-order terms , 2008, Proceedings of the National Academy of Sciences.

[45]  Kazuo Kitaura,et al.  Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method. , 2005, The Journal of chemical physics.

[46]  Wei Lu,et al.  TOPICAL REVIEW: Semiconductor nanowires , 2006 .

[47]  Jan H. Jensen,et al.  QM/MM Boundaries Across Covalent Bonds: A Frozen Localized Molecular Orbital-Based Approach for the Effective Fragment Potential Method , 2000 .