First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides

We present a scheme to construct model potentials, with parameters computed from first principles, for large-scale lattice-dynamical simulations of materials. We mimic the traditional solid-state approach to the investigation of vibrational spectra, i.e., we start from a suitably chosen reference configuration of the compound and describe its energy as a function of arbitrary atomic distortions by means of a Taylor series. Such a form of the potential-energy surface is general, trivial to formulate for any material, and physically transparent. Further, such models involve clear-cut approximations, their precision can be improved in a systematic fashion, and their simplicity allows for convenient and practical strategies to compute/fit the potential parameters. We illustrate our scheme with two challenging cases in which the model potential is strongly anharmonic, namely, the ferroic perovskite oxides PbTiO3 and SrTiO3. Studying these compounds allows us to better describe the connection between the so-called effective-Hamiltonian method and ours (which may be seen as an extension of the former), and to show the physical insight and predictive power provided by our approach-e.g., we present new results regarding the factors controlling phase-transition temperatures, novel phase transitions under elastic constraints, an improved treatment of thermal expansion, etc.

[1]  S. K. Kurtz,et al.  Atomic Displacement Relationship to Curie Temperature and Spontaneous Polarization in Displacive Ferroelectrics , 1968 .

[2]  Optimized local modes for lattice-dynamical applications , 1999, cond-mat/9904306.

[3]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[4]  J. Íñiguez,et al.  Novel Nanoscale Twinned Phases in Perovskite Oxides , 2013 .

[5]  Leslie E. Cross,et al.  Thermodynamic theory of PbTiO3 , 1987 .

[6]  I. Brown,et al.  Recent Developments in the Methods and Applications of the Bond Valence Model , 2009, Chemical reviews.

[7]  Garcia,et al.  Finite-temperature properties of Pb(Zr1-xTi(x))O3 alloys from first principles , 2000, Physical review letters.

[8]  E. Pytte Theory of Perovskite Ferroelectrics , 1972 .

[9]  Liège,et al.  Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides , 2008, 0805.0753.

[10]  LATTICE DYNAMICS OF BATIO3, PBTIO3, AND PBZRO3 : A COMPARATIVE FIRST-PRINCIPLES STUDY , 1999, cond-mat/9901246.

[11]  A. Rappe,et al.  Development of a bond-valence molecular-dynamics model for complex oxides , 2005 .

[12]  L. Bellaiche,et al.  Unusual phase transitions in ferroelectric nanodisks and nanorods , 2004, Nature.

[13]  A Lubk,et al.  Flexoelectric rotation of polarization in ferroelectric thin films. , 2011, Nature materials.

[14]  L Bellaiche,et al.  Phase diagram of pb(Zr,Ti)O3 solid solutions from first principles. , 2006, Physical review letters.

[15]  Alberto García,et al.  Electromechanical behavior of BaTiO3 from first principles , 1997, cond-mat/9712312.

[16]  J. Kiat,et al.  Rietveld analysis of strontium titanate in the Müller state , 1996 .

[17]  A. Glazer,et al.  Simple ways of determining perovskite structures , 1975 .

[18]  S. Phillpot,et al.  Atomic-level simulation of ferroelectricity in oxide materials , 2005 .

[19]  J. Behler,et al.  Construction of high-dimensional neural network potentials using environment-dependent atom pairs. , 2012, The Journal of chemical physics.

[20]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[21]  Rabe,et al.  Phase transitions in BaTiO3 from first principles. , 1994, Physical review letters.

[22]  I. Ponomareva,et al.  Modelling of nanoscale ferroelectrics from atomistic simulations , 2005 .

[23]  A. Okazaki,et al.  Ultra-high-angle double-crystal X-ray diffractometry (U-HADOX) for determining a change in the lattice spacing: theory. , 2001, Acta crystallographica. Section A, Foundations of crystallography.

[24]  U. Waghmare,et al.  Dynamic local distortions in KNbO3 , 1999 .

[25]  David Vanderbilt,et al.  First-principles approach to insulators in finite electric fields. , 2002, Physical review letters.

[26]  K. Rabe,et al.  Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films , 1999, cond-mat/9911354.

[27]  García,et al.  First-principles study of stability and vibrational properties of tetragonal PbTiO3. , 1996, Physical review. B, Condensed matter.

[28]  P. N. Keating,et al.  Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure , 1966 .

[29]  Vanderbilt,et al.  Effect of quantum fluctuations on structural phase transitions in SrTiO3 and BaTiO3. , 1995, Physical review. B, Condensed matter.

[30]  K. Müller,et al.  SrTi O 3 : An intrinsic quantum paraelectric below 4 K , 1979 .

[31]  G. Kresse,et al.  SrTiO 3 and BaTiO 3 revisited using the projector augmented wave method: Performance of hybrid and semilocal functionals , 2008 .

[32]  J. Junquera,et al.  First principles modeling of ferroelectric oxide nanostructures. , 2006, cond-mat/0605299.

[33]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[34]  I. Kornev,et al.  Finite-temperature properties of multiferroic BiFeO3. , 2007, Physical review letters.

[35]  J. Íñiguez,et al.  First-principles predictions of low-energy phases of multiferroic BiFeO 3 , 2010, 1011.0563.

[36]  D. Vanderbilt,et al.  Giant LO-TO splittings in perovskite ferroelectrics. , 1994, Physical review letters.

[37]  Rabe,et al.  Localized basis for effective lattice Hamiltonians: Lattice Wannier functions. , 1995, Physical review. B, Condensed matter.

[38]  P. Lunkenheimer,et al.  Dielectric spectroscopy of SrTiO3 , 1994 .

[39]  Junichiro Shiomi,et al.  Thermal conductivity of half-Heusler compounds from first-principles calculations , 2011 .

[40]  E. Jones,et al.  The unusual conduction band minimum formation of Ga(As{sub 0.5{minus}y}P{sub 0.5{minus}y}N{sub 2y}) alloys , 2000 .

[41]  D. Vanderbilt,et al.  First-principles study of ferroelectric and antiferrodistortive instabilities in tetragonal SrTiO 3 , 2000, cond-mat/0004372.

[42]  D. Vanderbilt,et al.  Electric displacement as the fundamental variable in electronic-structure calculations , 2008, 0806.0844.

[43]  Vanderbilt,et al.  Competing structural instabilities in cubic perovskites. , 1994, Physical review letters.

[44]  Rabe,et al.  First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. , 1995, Physical review. B, Condensed matter.

[45]  A. Maiti,et al.  Structural and electronic properties of PbTiO3, PbZrO3, and PbZr0.5Ti0.5O3: First-principles density-functional studies , 2002 .

[46]  Ilya Grinberg,et al.  Relationship between local structure and phase transitions of a disordered solid solution , 2002, Nature.

[47]  D. Vanderbilt,et al.  First-principles investigation of ferroelectricity in perovskite compounds. , 1994, Physical review. B, Condensed matter.

[48]  Boehmer,et al.  Dielectric spectroscopy in SrTiO3. , 1994, Physical review. B, Condensed matter.

[49]  Murray Hill,et al.  Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory , 2005, cond-mat/0501548.

[50]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[51]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[52]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[53]  Teter Additional condition for transferability in pseudopotentials. , 1993, Physical review. B, Condensed matter.

[54]  U. V. Waghmare,et al.  Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO 3 , 1997 .

[55]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[56]  Philippe Ghosez,et al.  Improper ferroelectricity in perovskite oxide artificial superlattices , 2008, Nature.

[57]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[58]  A. Baldereschi,et al.  Role of covalent bonding in the polarization of perovskite oxides: The case of KNbO3. , 1994, Physical review. B, Condensed matter.

[59]  X. Gonze,et al.  Dynamical atomic charges: The case of ABO(3) compounds , 1998 .

[60]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[61]  S. Fusil,et al.  Bridging multiferroic phase transitions by epitaxial strain in BiFeO3. , 2010, Physical review letters.

[62]  Rabe,et al.  Ab initio determination of a structural phase transition temperature. , 1987, Physical review letters.