Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]

The scaling that has governed the continual increase in density, performance, and efficiency of electronic devices is rapidly reaching its inevitable limitations. In order to sustain the trend of ever-increasing bandwidth and performance, new technologies are being considered. Among the many competitors, nanophotonic technologies are especially poised to have an impact on the field of integrated devices. Here, we examine the available technologies, both traditional photonics and plasmonics, with emphasis on the latter. A summary of the previous advances in the field of nanophotonics (interconnects and modulators), along with more recent works investigating novel and CMOS-compatible materials, are presented with a graphical comparison of their performance. We suggest that nanophotonic technologies offer key advantages for future hybrid electrophotonic devices, where the movement toward new material platforms is a precursor to high-performance, industry-ready devices.

[1]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[2]  Y. Gao,et al.  Structural, electronic, and optical properties of Mn4Si7 , 2008, International Conference on Thin Film Physics and Applications.

[3]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[4]  Vladimir M. Shalaev,et al.  Nanoparticle plasmonics: going practical with transition metal nitrides , 2015 .

[5]  A. Kildishev,et al.  Titanium nitride as a plasmonic material for visible and near-infrared wavelengths , 2012 .

[6]  Rupert F. Oulton,et al.  Confinement and propagation characteristics of subwavelength plasmonic modes , 2008 .

[7]  E. Economou Surface Plasmons in Thin Films , 1969 .

[8]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[9]  Alexei A. Maradudin,et al.  Excitation of surface polaritons by end-fire coupling. , 1983, Optics letters.

[10]  S. M. Prokes,et al.  Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths , 2013 .

[11]  Xinwan Li,et al.  Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide. , 2011, Applied optics.

[12]  Alexandra Boltasseva,et al.  Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. , 2008, Optics express.

[13]  Anatoly V Zayats,et al.  Silicon-based plasmonic waveguides. , 2010, Optics express.

[14]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[15]  Bing Wang,et al.  Surface plasmon polariton propagation in nanoscale metal gap waveguides. , 2004, Optics letters.

[16]  Pierre Berini,et al.  Amplification of long-range surface plasmons by a dipolar gain medium , 2010 .

[17]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[18]  Younan Xia,et al.  Observation of plasmon propagation, redirection, and fan-out in silver nanowires. , 2006, Nano letters.

[19]  Ye Hong,et al.  Preparation of polyethylene–paraffin compound as a form-stable solid-liquid phase change material , 2000 .

[20]  B. Kurdi,et al.  Optical waveguides in oxygen-implanted buried-oxide silicon-on-insulator structures. , 1988, Optics letters.

[21]  Naomi J. Halas,et al.  Coherent modulation of propagating plasmons in silver-nanowire-based structures. , 2011, Small.

[22]  J. C. Fan,et al.  Preparation of Sn‐doped In2O3 (ITO) films at low deposition temperatures by ion‐beam sputtering , 1979 .

[23]  Nikos Pleros,et al.  Dielectric‐loaded plasmonic waveguide components: Going practical , 2013 .

[24]  S. Belan,et al.  Adjustable subwavelength localization in a hybrid plasmonic waveguide. , 2012, Optics express.

[25]  X. Jing,et al.  Luminescence of Native Defects in Zn2GeO4 , 2007 .

[26]  A. Zayats,et al.  Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. , 2012, Physical review letters.

[27]  A. Koster,et al.  Low-loss optical waveguide on standard SOI/SIMOX substrate , 1998 .

[28]  Ulf Peschel,et al.  Excitation of plasmonic gap waveguides by nanoantennas. , 2009, Optics express.

[29]  Joseph T. Boyd,et al.  Extremely low‐loss glass thin‐film optical waveguides utilizing surface coating and laser annealing , 1981 .

[30]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[31]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides , 2007 .

[32]  N. Zheludev,et al.  Ultraviolet and visible range plasmonics of a topological insulator , 2014 .

[33]  Satoshi Ishii,et al.  Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. , 2010, Optics express.

[34]  Alexey V. Krasavin,et al.  Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides , 2007 .

[35]  Ulf Peschel,et al.  Functional plasmonic nanocircuits with low insertion and propagation losses. , 2013, Nano letters.

[36]  Jin Tae Kim,et al.  CMOS-Compatible Hybrid Plasmonic Waveguide for Subwavelength Light Confinement and On-Chip Integration , 2011, IEEE Photonics Technology Letters.

[37]  Guo-Qiang Lo,et al.  Experimental Demonstration of Vertical ${\rm Cu}\hbox{-}{\rm SiO}_{2}\hbox{-}{\rm Si}$ Hybrid Plasmonic Waveguide Components on an SOI Platform , 2012, IEEE Photonics Technology Letters.

[38]  K. MacDonald,et al.  Active plasmonics: current status , 2010 .

[39]  Min Yang,et al.  A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications , 2012, 2012 International Electron Devices Meeting.

[40]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[41]  G. Lo,et al.  Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits , 2011 .

[42]  Eyal Feigenbaum,et al.  Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. , 2010, Nano letters.

[43]  S. Bozhevolnyi,et al.  Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides , 2010, Journal of Lightwave Technology.

[44]  R. Soref Silicon Photonics: A Review of Recent Literature , 2010 .

[45]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[46]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[47]  Anthony L Lentine,et al.  Vertical junction silicon microdisk modulators and switches. , 2011, Optics express.

[48]  Sergey I. Bozhevolnyi,et al.  In-line extinction modulator based on long-range surface plasmon polaritons , 2005 .

[49]  M. Nielsen,et al.  Ultrafast all-optical modulation in a silicon nanoplasmonic resonator. , 2013, Optics express.

[50]  Jacob B. Khurgin,et al.  In search of the elusive lossless metal , 2010 .

[51]  S. Dey,et al.  Observation of sol‐gel solid phase epitaxial growth of ferroelectric Pb(Nb,Zr,Ti)O3 thin films on sapphire , 1992 .

[52]  M. Arnold,et al.  A review of the optical properties of alloys and intermetallics for plasmonics , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[53]  K. Kjaer,et al.  Integrated optical components utilizing long-range surface plasmon polaritons , 2005, Journal of Lightwave Technology.

[54]  Harald Ditlbacher,et al.  Dielectric optical elements for surface plasmons. , 2005, Optics letters.

[55]  M. Arnold,et al.  Designing materials for plasmonic systems: the alkali-noble intermetallics. , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[56]  Christopher Robert Lawrence,et al.  Surface plasmon-polariton study of the optical dielectric function of titanium nitride , 1998 .

[57]  M. Arnold,et al.  Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[58]  Harald Ditlbacher,et al.  Dielectric stripes on gold as surface plasmon waveguides , 2006 .

[59]  D. Lynch,et al.  Infrared Reflectivities of Magnesium Silicide, Germanide, and Stannide , 1963 .

[60]  Laurent Markey,et al.  Power monitoring in dielectric-loaded surface plasmon-polariton waveguides. , 2011, Optics express.

[61]  David M J S Bowman,et al.  Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. , 2011, Nature communications.

[62]  G. Kovács Optical excitation of surface plasma waves in an indium film bounded by dielectric layers , 1979 .

[63]  S. Bozhevolnyi,et al.  Long-range surface plasmon polariton nanowire waveguides for device applications. , 2006, Optics express.

[64]  D. Pile,et al.  Two-dimensionally localized modes of a nanoscale gap plasmon waveguide , 2005 .

[65]  Mark D. Losego,et al.  Dependence of plasmon polaritons on the thickness of indium tin oxide thin films , 2008 .

[66]  F. Namavar,et al.  Low-loss planar optical waveguides fabricated in SIMOX material , 1992, IEEE Photonics Technology Letters.

[67]  Richard A. Soref,et al.  Silicides for infrared surface plasmon resonance biosensors , 2008 .

[68]  R Orobtchouk,et al.  Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors. , 2003, Optics letters.

[69]  Ram Prakash Dwivedi,et al.  Plasmonic modulator utilizing three parallel metal–dielectric–metal waveguide directional coupler and elasto-optic effects , 2011 .

[70]  David E. Zelmon,et al.  A low‐scattering graded‐index SiO2 planar optical waveguide thermally grown on silicon , 1983 .

[71]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[72]  K. Diest,et al.  Vanadium dioxide based plasmonic modulators. , 2012, Optics express.

[73]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[74]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding , 2007 .

[75]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[76]  Jin-Soo Shin,et al.  Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal. , 2012, Optics express.

[77]  Wei Li,et al.  A Silicon-Based 3-D Hybrid Long-Range Plasmonic Waveguide for Nanophotonic Integration , 2012, Journal of Lightwave Technology.

[78]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[79]  H. Lezec,et al.  Highly confined photon transport in subwavelength metallic slot waveguides. , 2006, Nano letters.

[80]  Uriel Levy,et al.  Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide , 2010 .

[81]  N. Rotenberg,et al.  Ultrafast silicon-based active plasmonics at telecom wavelengths. , 2010, Optics express.

[82]  Sailing He,et al.  Low-loss hybrid plasmonic waveguide with double low-index nano-slots. , 2010, Optics express.

[83]  T. Koch,et al.  Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures , 1986 .

[84]  Shiyang Zhu,et al.  Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO₂/ITO/Cu stack for CMOS backend integration. , 2014, Optics express.

[85]  H. Atwater,et al.  Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides , 2012 .

[86]  A. Boltasseva,et al.  Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[87]  Vien Van,et al.  Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. , 2010, Optics express.

[88]  J. Kavalieros,et al.  High-/spl kappa//metal-gate stack and its MOSFET characteristics , 2004, IEEE Electron Device Letters.

[89]  W. Cai,et al.  Compact, high-speed and power-efficient electrooptic plasmonic modulators. , 2009, Nano letters.

[90]  R. Kurzweil The Law of Accelerating Returns , 2004 .

[91]  Xiaobo Yin,et al.  Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales , 2011 .

[92]  Sergey I. Bozhevolnyi,et al.  Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) , 2014, 2015 International Conference on Optical MEMS and Nanophotonics (OMN).

[93]  P. Berini,et al.  Plasmon polariton modes guided by a metal film of finite width. , 1999, Optics letters.

[94]  James S. Fakonas,et al.  Two-plasmon quantum interference , 2014, Nature Photonics.

[95]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[96]  Jagdish Narayan,et al.  Epitaxial Growth of TiN Films on (100) Silicon Substrates by Laser Physical Vapor Deposition , 1992 .

[97]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[98]  Pierre Berini,et al.  Figures of merit for surface plasmon waveguides. , 2006, Optics express.

[99]  Yun Tang,et al.  Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. , 2007, Nature materials.

[100]  R. M. Mehra,et al.  Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient , 2001 .

[101]  Sergey I. Bozhevolnyi,et al.  Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths , 2003 .

[102]  Alexandros Emboras,et al.  Nanoscale plasmonic memristor with optical readout functionality. , 2013, Nano letters.

[103]  Viktor A. Podolskiy,et al.  Transparent conductive oxides: Plasmonic materials for telecom wavelengths , 2011 .

[104]  Changtao Wang,et al.  Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide. , 2010, Optics express.

[105]  Dean J. Miller,et al.  Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons , 2007 .

[106]  Yoshinori Uzawa,et al.  Superconducting properties and crystal structures of single‐crystal niobium nitride thin films deposited at ambient substrate temperature , 1996 .

[107]  L C Kimerling,et al.  Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction. , 2001, Optics letters.

[108]  Richard Soref,et al.  Longwave plasmonics on doped silicon and silicides. , 2008, Optics express.

[109]  Viktoriia E. Babicheva,et al.  Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials. , 2013, Optics express.

[110]  N. Engheta,et al.  Polarization-dependent one-way surface wave propagation , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[111]  Min-Suk Kwon,et al.  Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. , 2011, Optics express.

[112]  Zheng Zheng,et al.  Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration. , 2009, Optics express.

[113]  A. D. Boardman,et al.  Retarded edge modes of a parabolic wedge , 1981 .

[114]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[115]  P. Berini,et al.  Experimental observation of plasmon polariton waves supported by a thin metal film of finite width. , 2000, Optics letters.

[116]  S. Bozhevolnyi,et al.  Bend loss in surface plasmon polariton band-gap structures , 2001 .

[117]  Vladimir M. Shalaev,et al.  Ultra-compact modulators based on novel CMOS-compatible plasmonic materials , 2013 .

[118]  G. D. Scott,et al.  Attenuated total reflection angular spectra of a Ag film bounded by dielectric slabs , 1978 .

[119]  G. Zhu,et al.  Engineering of low-loss metal for nanoplasmonic and metamaterials applications , 2009 .

[120]  Z. Zhao,et al.  Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate. , 2012, Optics express.

[121]  Thomas Pfadler,et al.  Erroneous efficiency reports harm organic solar cell research , 2014, Nature Photonics.

[122]  J. Horwitz,et al.  Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition , 2002 .

[123]  Pierre Berini,et al.  Long-range surface plasmon-polariton waveguides and devices in lithium niobate , 2007 .

[124]  Eloïse Devaux,et al.  Wavelength selective nanophotonic components utilizing channel plasmon polaritons. , 2007, Nano letters.

[125]  Laurent Markey,et al.  Thermo-optic control of dielectric-loaded plasmonic waveguide components. , 2010, Optics express.

[126]  G. Lo,et al.  Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators. , 2010, Optics express.

[127]  O. Muskens,et al.  Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches. , 2013, Optics express.

[128]  Richard A. Soref,et al.  IR permittivities for silicides and doped silicon , 2010 .

[129]  Oleksiy Krupin,et al.  Biosensing using straight long-range surface plasmon waveguides. , 2013, Optics express.

[130]  B. Delaet,et al.  Fabrication of a superconducting niobium nitride hot electron bolometer for single-photon counting , 2004 .

[131]  G. Veronis,et al.  Guided subwavelength plasmonic mode supported by a slot in a thin metal film. , 2005, Optics letters.

[132]  Andrea Alù,et al.  Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver , 2013, Advanced materials.

[133]  W. Jeong,et al.  Electrical and optical properties of ZnO thin film as a function of deposition parameters , 2001 .

[134]  Plasmonic waveguides cladded by hyperbolic metamaterials. , 2014, Optics letters.

[135]  Alexandra Boltasseva,et al.  Oxides and nitrides as alternative plasmonic materials in the optical range [Invited] , 2011 .

[136]  Shiyang Zhu,et al.  Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. , 2011, Optics express.

[137]  Richard A. Soref,et al.  Silicon-based optoelectronics , 1993, Proc. IEEE.

[138]  R. Salas-Montiel,et al.  Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics. , 2010, Nano letters.

[139]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[140]  Jing Liu,et al.  Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials , 2014, Proceedings of the National Academy of Sciences.

[141]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[142]  Vladimir M. Shalaev,et al.  Alternative Plasmonic Materials: Alternative Plasmonic Materials: Beyond Gold and Silver (Adv. Mater. 24/2013) , 2013 .

[143]  Chang-Hee Lee,et al.  Modeling of Seeded Reflective Modulators for DWDM Systems , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[144]  Mark L Brongersma,et al.  A nonvolatile plasmonic switch employing photochromic molecules. , 2008, Nano letters.

[145]  Viktoriia E. Babicheva,et al.  Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide , 2012, 1203.3374.

[146]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[147]  Harry A. Atwater,et al.  Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss , 2002 .

[148]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[149]  C. Ning,et al.  All-semiconductor active plasmonic system in mid-infrared wavelengths. , 2011, Optics express.

[150]  Shiyang Zhu,et al.  Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides. , 2012, Optics express.

[151]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[152]  B. De Salvo,et al.  MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices. , 2012, Optics express.

[153]  Nikolay I. Zheludev,et al.  Active control of surface plasmon-polariton waves , 2005 .

[154]  G. Kovacs Optical Excitation of Resonant Electromagnetic Oscillations in Thin Films. , 1978 .

[155]  Pavel Ginzburg,et al.  Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing. , 2006, Optics letters.

[156]  Martin Dressel,et al.  Electrodynamics of Solids: Optical Properties of Electrons in Matter , 2002 .

[157]  Dennis G. Hall Survey of Silicon-Based Integrated Optics , 1987, Computer.

[158]  Jung Jin Ju,et al.  Sub-dB/cm propagation loss in silver stripe waveguides. , 2009, Optics express.

[159]  Christophe Py,et al.  Room temperature deposition of ITO using r.f. magnetron sputtering , 2002 .

[160]  H. Lezec,et al.  Electrooptic modulation in thin film barium titanate plasmonic interferometers. , 2008, Nano letters.

[161]  J. Dionne,et al.  Silicon-Based Plasmonics for On-Chip Photonics , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[162]  Peter Nordlander,et al.  Nanoparticle-mediated coupling of light into a nanowire. , 2007, Nano letters.

[163]  Alexandra Boltasseva,et al.  Semiconductors for plasmonics and metamaterials , 2010, 1108.1529.

[164]  Antao Chen,et al.  Integration of photonic and silver nanowire plasmonic waveguides. , 2008, Nature nanotechnology.

[165]  Kristjan Leosson,et al.  Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths. , 2011, Optics letters.

[166]  Tatsuhiko Sugiyama,et al.  Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. , 2005, Optics express.

[167]  R. Soref,et al.  Optical waveguides in SIMOX structures , 1991, IEEE Photonics Technology Letters.

[168]  J. Khurgin,et al.  Reflecting upon the losses in plasmonics and metamaterials , 2012 .

[169]  P. Berini Long-range surface plasmon polaritons , 2009 .

[170]  David E. Zelmon,et al.  Guided Wave Optical Structures Utilizing Silicon , 1985 .

[171]  Wangshi Zhao,et al.  Nanoscale electro-optic modulators based on graphene-slot waveguides , 2012 .

[172]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[173]  Masahiro Tanaka,et al.  Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide , 2003 .

[174]  E. Kretschmann Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen , 1971 .

[175]  M. Nielsen,et al.  Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator. , 2011, Optics express.

[176]  A. Bouhelier,et al.  Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip , 2010 .

[177]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[178]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[179]  E. Gornik,et al.  Excitation of surface plasmons on titanium nitride films : determination of the dielectric function , 1994 .

[180]  L. Miglio,et al.  Structural, electronic and optical properties of Ru2Si3, Ru2Ge3, Os2Si3 and Os2Ge3 , 2002 .

[181]  Mark D. Losego,et al.  Surface plasmon resonance in conducting metal oxides , 2006 .

[182]  Martin Wegener,et al.  Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials [Invited] , 2011 .

[183]  Suntak Park,et al.  40Gbit∕s light signal transmission in long-range surface plasmon waveguides , 2007 .

[184]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[185]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[186]  Richard Soref,et al.  Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures. , 2012, Optics express.

[187]  Nicolas Gisin,et al.  Energy-time entanglement preservation in plasmon-assisted light transmission. , 2004, Physical review letters.

[188]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[189]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[190]  Jin Tae Kim CMOS-Compatible Hybrid Plasmonic Slot Waveguide for On-Chip Photonic Circuits , 2011, IEEE Photonics Technology Letters.

[191]  Goran Z. Mashanovich,et al.  Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS) , 2008, SPIE OPTO.

[192]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[193]  Moon-Ho Jo,et al.  Near-field electrical detection of optical plasmons and single plasmon sources , 2009, Proceedings of the Fourth European Conference on Antennas and Propagation.

[194]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[195]  E. Cartier,et al.  Reliability Challenges for CMOS Technology Qualifications With Hafnium Oxide/Titanium Nitride Gate Stacks , 2009, IEEE Transactions on Device and Materials Reliability.

[196]  O. Mitomi,et al.  Millimeter-wave Ti:LiNbO/sub 3/ optical modulators , 1998 .

[197]  G. Lo,et al.  Experimental Demonstration of Horizontal Nanoplasmonic Slot Waveguide-Ring Resonators With Submicrometer Radius , 2011, IEEE Photonics Technology Letters.

[198]  P. D. Flammer,et al.  Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements. , 2009, Optics express.

[199]  Viktoriia E. Babicheva,et al.  Plasmonic finite-thickness metal–semiconductor–metal waveguide as ultra-compact modulator , 2013, 1301.5603.

[200]  Xianmin Zhang,et al.  CMOS-Compatible Long-Range Dielectric-Loaded Plasmonic Waveguides , 2013, Journal of Lightwave Technology.

[201]  Masanobu Haraguchi,et al.  Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding , 2005 .

[202]  M. Eremets,et al.  Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound , 2014, Nature Communications.

[203]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[204]  A. Biberman,et al.  An ultralow power athermal silicon modulator , 2014, Nature Communications.

[205]  Kunihiro Fukui,et al.  Indium tin oxide thin films prepared by chemical vapour deposition , 1991 .

[206]  F. García-Vidal,et al.  Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. , 2008, Physical review letters.

[207]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[208]  Zheng Zheng,et al.  Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement. , 2010, Optics express.

[209]  Yudong Wang,et al.  Plasmonics and Metamaterials with Transparent Conducting Oxides , 2014 .

[210]  Wolfgang Freude,et al.  Photonic-to-plasmonic mode converter. , 2014, Optics letters.

[211]  X. Zhang,et al.  Ultra-compact silicon nanophotonic modulator with broadband response , 2012 .

[212]  Yeon-Gon Mo,et al.  High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel , 2007 .

[213]  N. Zheludev,et al.  Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations , 2003, cond-mat/0310530.

[214]  P. Berini,et al.  Passive integrated optics elements based on long-range surface plasmon polaritons , 2006, Journal of Lightwave Technology.

[215]  Wayne Dickson,et al.  All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain. , 2011, Nano letters.

[216]  Wolfgang Freude,et al.  Surface plasmon polariton absorption modulator. , 2011, Optics express.

[217]  E. A. Gulbransen,et al.  Thin oxide films on aluminum. , 1947, The Journal of physical and colloid chemistry.

[218]  R. Soref,et al.  All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm , 1986 .

[219]  Z. Ikonic,et al.  Electro-optic metal–insulator–semiconductor–insulator–metal Mach-Zehnder plasmonic modulator , 2012 .

[220]  Qianfan Xu,et al.  12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. , 2007, Optics express.

[221]  H. Lezec,et al.  All-optical modulation by plasmonic excitation of CdSe quantum dots , 2007 .

[222]  Qihuang Gong,et al.  Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides. , 2009, Optics express.

[223]  Xiang Zhang,et al.  Double-layer graphene optical modulator. , 2012, Nano letters.

[224]  Cheng Zhang,et al.  An Ultrathin, Smooth, and Low‐Loss Al‐Doped Ag Film and Its Application as a Transparent Electrode in Organic Photovoltaics , 2014, Advanced materials.

[225]  Harald Giessen,et al.  Yttrium hydride nanoantennas for active plasmonics , 2014, Optics & Photonics - NanoScience + Engineering.

[226]  Shanhui Fan,et al.  Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides. , 2007, Optics express.

[227]  C. Callender,et al.  Long-range surface plasmon polariton waveguides embedded in fluorinated polymer. , 2008, Applied optics.

[228]  Shiyang Zhu,et al.  Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides , 2011 .

[229]  David Hillerkuss,et al.  The plasmonic memristor: a latching optical switch , 2014 .

[230]  Surface Plasmon Coplanar Waveguides: Mode Characteristics and Mode Conversion Losses , 2009, IEEE Photonics Technology Letters.

[231]  Shiyang Zhu,et al.  Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides. , 2013, Optics express.

[232]  Volker J. Sorger,et al.  A Sub-$\lambda$-Size Modulator Beyond the Efficiency-Loss Limit , 2013, IEEE Photonics Journal.

[233]  Frederick F. Lange,et al.  Patterning of polymers: precise channel stamping by optimizing wetting properties , 2004 .

[234]  Viktoriia E. Babicheva,et al.  Experimental demonstration of titanium nitride plasmonic interconnects. , 2014, Optics express.

[235]  Harry A. Atwater The promise of plasmonics. , 2007 .

[236]  Jesper Jung,et al.  Scaling for gap plasmon based waveguides. , 2008, Optics express.

[237]  G. T. Reed,et al.  Silicon-on-insulator optical rib waveguides: loss, mode characteristics, bends and y-junctions , 1994 .

[238]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[239]  A. Maradudin,et al.  Electrostatic Edge Modes in a Dielectric Wedge , 1972 .

[240]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[241]  Wangshi Zhao,et al.  Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides , 2012, IEEE Photonics Journal.

[242]  S. Bozhevolnyi Plasmonic nanoguides and circuits , 2008 .

[243]  Lay Kee Ang,et al.  Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator , 2013, nano Online.

[244]  Cui Yiping,et al.  Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides. , 2009, Optics express.

[245]  Volker J. Sorger,et al.  Plasmon lasers: coherent light source at molecular scales , 2013 .

[246]  Yeon-Gon Mo,et al.  Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment , 2007 .

[247]  J. Marti,et al.  Analysis of Hybrid Dielectric Plasmonic Waveguides , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[248]  Masuo Fukui,et al.  Experimental Observation of Long-Range Surface Plasmon Polaritons , 1983 .

[249]  A. Czanderna,et al.  THE OXIDATION OF COPPER FILMS TO CuO0.67 , 1962 .

[250]  Lech Wosinski,et al.  Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.