A Theory of Game Trees, Based on Solution Trees

In this paper, a theory of game tree algorithms is presented, entirely based upon the concept of solution tree. During execution of a game tree algorithm, one may distinguish between so-called alive and dead nodes. It will turn out, that only alive nodes have to be considered, whereas dead nodes should be neglected. The algorithm may stop, when every node is dead. Further, it is proved that every algorithm needs to build a critical tree. Finally, we show, that some common game tree algorithms agree with this theory.

[1]  Alexander Reinefeld,et al.  An Improvement to the Scout Tree Search Algorithm , 1983, J. Int. Comput. Games Assoc..

[2]  T. Anthony Marsland,et al.  A Comparison of Minimax Tree Search Algorithms , 1983, Artif. Intell..

[3]  C. A. R. HOARE,et al.  An axiomatic basis for computer programming , 1969, CACM.

[4]  Richard E. Korf,et al.  Best-First Minimax Search , 1996, Artif. Intell..

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Wim Pijls,et al.  Another View on the SSS* Algorithm , 1990, SIGAL International Symposium on Algorithms.

[7]  Vipin Kumar,et al.  A General Branch and Bound Formulation for Understanding and Synthesizing And/Or Tree Search Procedures , 1983, Artif. Intell..

[8]  SOFSEM'96: Theory and Practice of Informatics , 1996, Lecture Notes in Computer Science.

[9]  Toshihide Ibaraki,et al.  Generalization of Alpha-Beta and SSS Search Procedures , 1986, Artif. Intell..

[10]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[11]  George C. Stockman,et al.  A Minimax Algorithm Better than Alpha-Beta? , 1979, Artif. Intell..

[12]  Judea Pearl,et al.  Asymptotic Properties of Minimax Trees and Game-Searching Procedures , 1980, Artif. Intell..

[13]  Wim Pijls,et al.  Searching Informed Game Trees , 1992, ISAAC.

[14]  Jonathan Schaeffer,et al.  Low Overhead Alternatives to SSS , 1987, Artif. Intell..

[15]  Donald E. Knuth,et al.  The Solution for the Branching Factor of the Alpha-Beta Pruning Algorithm , 1981, ICALP.

[16]  Alexander Reinefeld,et al.  Time-eecient State Space Search , 1994 .

[17]  Vipin Kumar,et al.  Parallel Branch-and-Bound Formulations for AND/OR Tree Search , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  H. Jaap van den Herik,et al.  Proof-Number Search , 1994, Artif. Intell..

[19]  Wim Pijls,et al.  Trends in Game Tree Search , 1996, SOFSEM.

[20]  Judea Pearl,et al.  A Minimax Algorithm Better Than Alpha-Beta? Yes and No , 1983, Artif. Intell..

[21]  Gérard M. Baudet,et al.  On the Branching Factor of the Alpha-Beta Pruning Algorithm , 1978, Artif. Intell..

[22]  Jonathan Schaeffer,et al.  Best-First Fixed-Depth Game-Tree Search in Practice , 1995, IJCAI.

[23]  Aske Plaat,et al.  Solution Trees as a Basis for Game-Tree Search , 1994, J. Int. Comput. Games Assoc..

[24]  Jesfis Peral,et al.  Heuristics -- intelligent search strategies for computer problem solving , 1984 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Jean-Christophe Weill The NegaC* Search , 1992, J. Int. Comput. Games Assoc..

[27]  L. V. Allis,et al.  Searching for solutions in games and artificial intelligence , 1994 .

[28]  Amitava Bagchi,et al.  A Faster Alternative to SSS* with Extension to Variable Memory , 1993, Inf. Process. Lett..