Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer

Abstract In this study, we investigate a method to fabricate high quality lanthanum strontium cobalt ferrite (LSCF) cathodes for solid oxide fuel cells (SOFCs) using a commercial low price inkjet printer. The ink source is synthesized by dissolving the LSCF nanopowder in a water-based solvent with a proper amount of surfactants. Microstructures of the LSCF layer, including porosity and thickness per printing scan cycle, are adjusted by grayscale in the printing image. It is successfully demonstrated that anode-supported SOFCs with optimally printed LSCF cathodes can produce decent power output, i.e., a maximum peak power density of 377 mW cm −2 at 600 °C, in our experiment. We expect that this approach can support the quick and easy prototyping and evaluating of a variety of cathode materials in SOFC research.

[1]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[2]  Koichi Kobayashi,et al.  Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy , 2001 .

[3]  H. Hng,et al.  Fabrication of flexible thermoelectric thin film devices by inkjet printing. , 2014, Small.

[4]  P. Calvert Inkjet Printing for Materials and Devices , 2001 .

[5]  Ghassan E. Jabbour,et al.  Desktop inkjet printer as a tool to print conducting polymers , 2006 .

[6]  Suk Won Cha,et al.  Atomic layer deposition of thin-film ceramic electrolytes for high-performance fuel cells , 2013 .

[7]  Hui Xiong,et al.  An experimental investigation into micro-fabricated solid oxide fuel cells with ultra-thin La0.6Sr0.4Co0.8Fe0.2O3 cathodes and yttria-doped zirconia electrolyte films , 2009 .

[8]  K. Yoon,et al.  The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells , 2014 .

[9]  Nigel P. Brandon,et al.  Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8 O 3 Cathodes for Intermediate-Temperature SOFCs , 2004 .

[10]  Rainer Telle,et al.  Development of high solid content aqueous 3Y-TZP suspensions for direct inkjet printing using a thermal inkjet printer , 2009 .

[11]  K. Shin,et al.  Active Digital Microfluidic Paper Chips with Inkjet‐Printed Patterned Electrodes , 2014, Advanced materials.

[12]  Michael Rottmayer,et al.  Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells , 2008 .

[13]  K. Ahn,et al.  Optimization of Experimental Parameters to Suppress Nozzle Clogging in Inkjet Printing , 2012 .

[14]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[15]  Ji-won Son,et al.  Direct Applicability of La0.6Sr0.4CoO3 – δ Thin Film Cathode to Yttria Stabilised Zirconia Electrolytes at T ≤ 650 °C , 2010 .

[16]  Brian Derby,et al.  Ink‐Jet Printing and Sintering of PZT , 2005 .

[17]  S. Zha,et al.  Novel Nanostructured Electrodes for Solid Oxide Fuel Cells Fabricated by Combustion Chemical Vapor Deposition (CVD) , 2004 .

[18]  J. Cesarano,et al.  Direct Ink Writing of Three‐Dimensional Ceramic Structures , 2006 .

[19]  Xiao-Dong Zhou,et al.  Application of vacuum deposition methods to solid oxide fuel cells , 2006 .

[20]  G. Jabbour,et al.  Inkjet Printing—Process and Its Applications , 2010, Advanced materials.

[21]  Koichi Kikuta,et al.  Application of a thin intermediate cathode layer prepared by inkjet printing for SOFCs , 2010 .

[22]  Toshiaki Yamaguchi,et al.  Development of a Dense Electrolyte Thin Film by the Ink‐Jet Printing Technique for a Porous LSM Substrate , 2007 .

[23]  D. Brett,et al.  Intermediate temperature solid oxide fuel cells. , 2008, Chemical Society reviews.

[24]  Thomas L. Reitz,et al.  Inkjet Printing of Anode Supported SOFC: Comparison of Slurry Pasted Cathode and Printed Cathode , 2009 .

[25]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[26]  R. Tomov,et al.  Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells , 2010 .

[27]  Ghassan E. Jabbour,et al.  Inkjet Printing of Oxidants for Patterning of Nanometer‐Thick Conducting Polymer Electrodes , 2006 .

[28]  Hong Huang,et al.  Controlling Inkjet Fluid Kinematics to Achieve SOFC Cathode Micropatterns , 2015 .

[29]  Moses O. Tadé,et al.  Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing , 2015 .

[30]  Brian Derby,et al.  Inkjet printing ceramics: from drops to solid , 2011 .

[31]  V. Bulović,et al.  Inkjet‐Printed Quantum Dot–Polymer Composites for Full‐Color AC‐Driven Displays , 2009 .

[32]  E. Özkol Rheological Characterization of Aqueous 3Y‐TZP Inks Optimized for Direct Thermal Ink‐Jet Printing of Ceramic Components , 2013 .

[33]  Thomas L. Reitz,et al.  Ink‐Jet Printing: A Versatile Method for Multilayer Solid Oxide Fuel Cells Fabrication , 2009 .

[34]  Zongping Shao,et al.  Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance , 2013 .

[35]  Zongping Shao,et al.  Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte , 2009 .

[36]  B. Steele Survey of materials selection for ceramic fuel cells II. Cathodes and anodes , 1996 .

[37]  Jun Woo Kim,et al.  Performance Degradation of Lanthanum Strontium Cobaltite after Surface Modification , 2015 .

[38]  Thierry Chartier,et al.  3D fine scale ceramic components formed by ink-jet prototyping process , 2005 .

[39]  Johan Hjelm,et al.  Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells , 2015 .

[40]  P. Greil,et al.  Review: aqueous tape casting of ceramic powders , 1995 .

[41]  Chunwen Sun,et al.  Cathode materials for solid oxide fuel cells: a review , 2010 .

[42]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[43]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[44]  A. Roosen,et al.  Rheological characterization of water-based slurries for the tape casting process , 2002 .