Theoretical Studies on Hexanuclear Oxometalates [M6L19](q-) (M = Cr, Mo, W, Sg, Nd, U). Electronic Structures, Oxidation States, Aromaticity, and Stability.

We here report a systematic theoretical study on geometries, electronic structures, and energetic stabilities of six hexanuclear polyoxometalates [M6O19](2-) of the six-valence-electron metals including the d-elements M = Cr, Mo, W, Sg from group 6 and the f-elements M = Nd, U. Scalar relativistic density functional theory was applied to these clusters in vacuum and in solution. It is shown that the Oh Lindqvist structure of the isolated [M6O19](2-) units with hexavalent M elements (M(+6)) is only stable for the three heavy transition metals M = Mo, W, and Sg. The rare Th symmetry is predicted for M = U both in vacuum and in solution, owing to pseudo-Jahn-Teller distortion of these closed-shell systems. The Oh and Th structures correspond to cyclic "aromatic" U-̇O-̇U and alternating U=O-U bonding of cross-linked U4O4 rings, respectively. The reduced [U6O19](8-) cluster with pentavalent U(+5) also shows Th symmetry in vacuum, but Oh symmetry in a dielectric environment. The occurrence of different structures for varying fractional oxidation states in different environments is rationalized. Theoretical investigation of the recently synthesized U(+5) complex [U6O13L6](0) (L6 = tetracyclopentadienyl dibipyridine) shows a distorted Th-type symmetry, too. The stabilities of these complexes of different metal oxidation states are consistent with the general periodic trends of oxidation states.

[1]  P. Pyykkö Dirac-Fock One-Centre Calculations Part 8. The 1Σ States of ScH, YH, LaH, AcH, TmH, LuH and LrH , 1979 .

[2]  W. Schwarz,et al.  On the maximum bond multiplicity of carbon: unusual C≣U quadruple bonding in molecular CUO , 2012 .

[3]  A. Boldyrev,et al.  Aromaticity and Antiaromaticity in Inorganic Chemistry , 2013 .

[4]  Jun Li,et al.  Observation of an all-boron fullerene. , 2014, Nature chemistry.

[5]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[6]  H. Zhuang,et al.  Structure and reactivity of molybdenum clusters with loose coordination site, Mo3[S4P(OEt)2]4L , 1988 .

[7]  Richard L. Martin,et al.  Covalency in f-element complexes , 2013 .

[8]  R. D. Poshusta,et al.  Preparation and crystal structure of dipyrazinium trichromate and bond length correlation for chromate anions of the form CrnO3n+12− , 1988 .

[9]  Bess Vlaisavljevich,et al.  Understanding the structure and formation of uranyl peroxide nanoclusters by quantum chemical calculations. , 2010, Journal of the American Chemical Society.

[10]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[11]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[12]  H. Allcock,et al.  Structure of a new isopolymolybdate-cyclophosphazene complex , 1972 .

[13]  Georg Schreckenbach,et al.  Theoretical actinide molecular science. , 2010, Accounts of chemical research.

[14]  P. Burns,et al.  Clusters of actinides with oxide, peroxide, or hydroxide bridges. , 2013, Chemical reviews.

[15]  B. Scott,et al.  Synthesis and Structural Characterization of the First Uranium Cluster Containing an Isopolyoxometalate Core , 2001 .

[16]  E. Steckhan,et al.  Electrochemical Properties of Polyoxometalates as Electrocatalysts. , 1998, Chemical reviews.

[17]  I. Bersuker,et al.  Modern aspects of the Jahn-Teller effect theory and applications to molecular problems. , 2001, Chemical reviews.

[18]  Chun‐Wan Liu,et al.  Electronic structures and dpπ bonding of some M3X4+4 cluster compounds , 1994 .

[19]  Scott G. Mitchell,et al.  Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture. , 2010, Nature chemistry.

[20]  B. Roos,et al.  Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond , 2005, Nature.

[21]  A. Hirsch,et al.  Spherical Aromaticity of Inorganic Cage Molecules. , 2001, Angewandte Chemie.

[22]  Andreas Hirsch,et al.  Spherical Aromaticity in Ih Symmetrical Fullerenes: The 2(N+1)2 Rule. , 2000, Angewandte Chemie.

[23]  Norman L. Allinger,et al.  Molecular mechanics parameters , 1994 .

[24]  G. Shamov Relativistic density functional study on uranium(IV) and thorium(IV) oxide clusters of zonohedral geometry. , 2012, Inorganic chemistry.

[25]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[26]  J. Fuchs,et al.  Neubestimmung der Kristallstruktur von Tetrabutylammoniumhexawolframat , 1978 .

[27]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[28]  Zhi-da Chen,et al.  Localized molecular orbitals and the problem of quasi-aromaticity in trinuclear molybdenum cluster compounds with cores of the type [MO3(μ3-X)(μ-Y)3]n+ (X, Y = O, S, n = 4; X = O, Y = Cl, n = 5) , 1991 .

[29]  Alexander I Boldyrev,et al.  Developing paradigms of chemical bonding: adaptive natural density partitioning. , 2008, Physical chemistry chemical physics : PCCP.

[30]  L. Soderholm,et al.  Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation products. , 2013, Chemical reviews.

[31]  P. Cui,et al.  A multicentre-bonded [ZnI]8 cluster with cubic aromaticity , 2015, Nature Communications.

[32]  Chun‐Wan Liu,et al.  Theoretical studies of (d-p)ρ bonding, electronic spectra, and reactivities in homo- and heterometallic clusters: [Mo3-n Wn X4(H2O)9]4+ ( X = O, S, Se, Te;n= 0-3) , 1996 .

[33]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[34]  W. Schwarz,et al.  An 18-electron system containing a superheavy element: theoretical studies of sg@au12. , 2015, Inorganic chemistry.

[35]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[36]  R. King Chemical applications of topology and group theory. 25. Electron delocalization in early-transition-metal heteropoly- and isopolyoxometalates , 1991 .

[37]  Weitao Yang,et al.  Challenges for density functional theory. , 2012, Chemical reviews.

[38]  Sebastian Riedel,et al.  Triple-bond covalent radii. , 2005, Chemistry.

[39]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[40]  W. Schwarz,et al.  Excited States and Absorption Spectra of UF6: A RASPT2 Theoretical Study with Spin-Orbit Coupling. , 2011, Journal of chemical theory and computation.

[41]  Jun Yu Li,et al.  Uranyl-glycine-water complexes in solution: comprehensive computational modeling of coordination geometries, stabilization energies, and luminescence properties. , 2011, Inorganic chemistry.

[42]  P. Miró,et al.  On the origin of the cation templated self-assembly of uranyl-peroxide nanoclusters. , 2010, Journal of the American Chemical Society.

[43]  Jun Yu Li,et al.  Electronic spectra and excited states of neptunyl and its [NpO2Cl4]2- complex. , 2012, Inorganic chemistry.

[44]  A. Boldyrev,et al.  Chemical Bonding in Inorganic Aromatic Compounds , 2014 .

[45]  Group-Theoretical Treatment of Pseudo-Jahn-Teller Systems , 2011 .

[46]  W. Schwarz,et al.  On two different objectives of the concepts of ionic radii. , 2013, Chemistry.

[47]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[48]  Jun Li Electronic Structures, (d-p)π Conjugation Effects, and Spectroscopic Properties of Polyoxometalates: M6O192− (M=Cr, Mo, W) , 2002 .

[49]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[50]  Lai‐Sheng Wang,et al.  Photoelectron Spectroscopy of Free Polyoxoanions Mo6O192- and W6O192- in the Gas Phase , 2004 .

[51]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[52]  A. Rocke It began with a daydream: the 150th anniversary of the Kekulé benzene structure. , 2015, Angewandte Chemie.

[53]  F. Feixas,et al.  Quantifying aromaticity with electron delocalisation measures. , 2015, Chemical Society reviews.

[54]  Leroy Cronin,et al.  Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. , 2007, Chemical Society reviews.

[55]  T. Ziegler Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics , 1991 .

[56]  Ivan V. Kozhevnikov,et al.  Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. , 1998, Chemical reviews.

[57]  Trevor W. Hayton,et al.  Recent developments in actinide-ligand multiple bonding. , 2013, Chemical communications.

[58]  Martin Kaupp,et al.  The role of radial nodes of atomic orbitals for chemical bonding and the periodic table , 2007, J. Comput. Chem..

[59]  H. Allcock,et al.  Crystal and molecular structure of a new hexamolybdate-cyclophosphazene complex , 1973 .

[60]  Chun‐Wan Liu,et al.  Ab initio studies of electronic structures and quasi-aromaticity in M3S4 –nO4+n(M = Mo, W; n= 0–4) clusters , 1994 .