Oxidation behavior of zirconium diboride-silicon carbide at 1800 °C

[1]  N. Padture,et al.  Improved processing and oxidation-resistance of ZrB2 ultra-high temperature ceramics containing SiC nanodispersoids , 2007 .

[2]  G. Hilmas,et al.  Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500 °C , 2007 .

[3]  William G. Fahrenholtz,et al.  Oxidation of Zirconium Diboride–Silicon Carbide at 1500°C at a Low Partial Pressure of Oxygen , 2006 .

[4]  F. Monteverde The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures , 2005 .

[5]  A. Bellosi,et al.  The resistance to oxidation of an HfB2–SiC composite , 2005 .

[6]  A. Bellosi,et al.  Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates , 2005 .

[7]  D. Van Wie,et al.  The hypersonic environment: Required operating conditions and design challenges , 2004 .

[8]  E. Opila,et al.  Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions , 2004 .

[9]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[10]  William G. Fahrenholtz,et al.  Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics , 2004 .

[11]  Alida Bellosi,et al.  Microstructure and Properties of an HfB2‐SiC Composite for Ultra High Temperature Applications , 2004 .

[12]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[13]  K. Upadhya,et al.  Materials for ultrahigh temperature structural applications , 1997 .

[14]  W. C. Butterman,et al.  Zircon Stability and the Zr02-Si02 Phase Diagram , 1967 .