Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices

In the present work, we show that the linearized homogenized model for a pantographic lattice must necessarily be a second gradient continuum, as defined in Germain (1973). Indeed, we compute the effective mechanical properties of pantographic lattices following two routes both based in the heuristic homogenization procedure already used by Piola (see Mindlin, 1965; dell'Isola et al., 2015a): (i) an analytical method based on an evaluation at micro-level of the strain energy density and (ii) the extension of the asymptotic expansion method up to the second order. Both identification procedures lead to the construction of the same second gradient linear continuum. Indeed, its effective mechanical properties can be obtained by means of either (i) the identification of the homogenized macro strain energy density in terms of the corresponding micro-discrete energy or (ii) the homogenization of the equilibrium conditions expressed by means of the principle of virtual power: actually the two methods produce the same results. Some numerical simulations are finally shown, to illustrate some peculiarities of the obtained continuum models especially the occurrence of bounday layers and transition zones. One has to remark that available well-posedness results do not apply immediately to second gradient continua considered here.

[1]  S. Forest,et al.  The role of the fluctuation field in higher order homogenization , 2010 .

[2]  J. Maxwell,et al.  The Scientific Papers of James Clerk Maxwell: On the Calculation of the Equilibrium and Stiffness of Frames , 1864 .

[3]  Ahmet S. Cakmak,et al.  A structural model of a micropolar continuum , 1968 .

[4]  E. Kuznetsov Underconstrained structural systems , 1991 .

[5]  Leopoldo Greco,et al.  B-Spline interpolation of Kirchhoff-Love space rods , 2013 .

[6]  A. Misra,et al.  Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model , 2015 .

[7]  Francesco dell’Isola,et al.  A Two-Dimensional Gradient-Elasticity Theory for Woven Fabrics , 2015 .

[8]  Alfio Grillo,et al.  A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage. , 2005, Journal of biomechanics.

[9]  Victor A. Eremeyev,et al.  Extended non‐linear relations of elastic shells undergoing phase transitions , 2007 .

[10]  E. Aifantis On the role of gradients in the localization of deformation and fracture , 1992 .

[11]  W H Harris,et al.  Limitations of the continuum assumption in cancellous bone. , 1988, Journal of biomechanics.

[12]  T. Lekszycki Modelling of Bone Adaptation Based on an Optimal Response Hypothesis* , 2002 .

[13]  A. Brillard,et al.  Asymptotic behaviour of a cylindrical elastic structure periodically reinforced along identical fibres , 2001, 1011.4367.

[14]  A Carcaterra,et al.  Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems. , 2007, The Journal of the Acoustical Society of America.

[15]  Massimo Cuomo,et al.  An enriched finite element for crack opening and rebar slip in reinforced concrete members , 2012, International Journal of Fracture.

[16]  Alessandro Della Corte,et al.  Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof , 2015 .

[17]  Angelo Luongo,et al.  Mode localization by structural imperfections in one-dimensional continuous systems , 1992 .

[18]  Ugo Andreaus,et al.  At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola , 2013, 1310.5599.

[19]  M. Pulvirenti,et al.  Macroscopic Description of Microscopically Strongly Inhomogenous Systems: A Mathematical Basis for the Synthesis of Higher Gradients Metamaterials , 2015, 1504.08015.

[20]  R. Dalziel,et al.  Articular cartilage. , 1971, Lancet.

[21]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[22]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[23]  Guy Bouchitté,et al.  Homogenization of a soft elastic material reinforced by fibers , 2002 .

[24]  C. Boutin,et al.  Homogenisation of periodic discrete medium: Application to dynamics of framed structures , 2003 .

[25]  Andrea Freda,et al.  Effects of free-stream turbulence and corner shape on the galloping instability of square cylinders , 2013 .

[26]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[27]  H. Altenbach,et al.  Linear theory of shells taking into account surface stresses , 2009 .

[28]  Marcelo Alonso,et al.  Mechanics and thermodynamics , 1980 .

[29]  Cung Huy Nguyen,et al.  Aeroelastic instability and wind-excited response of complex lighting poles and antenna masts , 2015 .

[30]  Gabriel Wittum,et al.  Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials , 2012 .

[31]  Leopoldo Greco,et al.  Wave propagation in pantographic 2D lattices with internal discontinuities , 2014, 1412.3926.

[32]  P. Seppecher,et al.  Determination of the Closure of the Set of Elasticity Functionals , 2003 .

[33]  Stefan Diebels,et al.  Evaluation of generalized continuum substitution models for heterogeneous materials , 2012 .

[34]  Tomasz Lekszycki,et al.  Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients , 2015 .

[35]  Timothy J. Healey,et al.  Global Continuation in Second-Gradient Nonlinear Elasticity , 2006, SIAM J. Math. Anal..

[36]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[37]  F. Cosserat,et al.  Sur la théorie de l'élasticité. Premier mémoire , 1896 .

[38]  Francesco dell’Isola,et al.  Elastne kahemõõtmeline pantograafiline võre: Numbriline analüüs staatilisest tagasisidest ja lainelevist , 2015 .

[39]  Gabriel Wittum,et al.  Evolution of a fibre-reinforced growing mixture , 2009 .

[40]  On the role of grain growth, recrystallization and polygonization in a continuum theory for anisotropic ice sheets , 2004, Annals of Glaciology.

[41]  J. Ganghoffer,et al.  Equivalent mechanical properties of auxetic lattices from discrete homogenization , 2012 .

[42]  Leopoldo Greco,et al.  A procedure for the static analysis of cable structures following elastic catenary theory , 2014 .

[43]  M. S. Sivakumar,et al.  Mechanics of Solids , 2008 .

[44]  Giuseppe Piccardo,et al.  On the effect of twist angle on nonlinear galloping of suspended cables , 2009 .

[45]  Angelo Luongo,et al.  Mode Localization in Dynamics and Buckling of Linear Imperfect Continuous Structures , 2001 .

[46]  Antonio Rinaldi,et al.  Rational Damage Model of 2D Disordered Brittle Lattices Under Uniaxial Loadings , 2009 .

[47]  A. Zervos,et al.  Continua with microstructure: second-gradient theory , 2010 .

[48]  Giuseppe Piccardo,et al.  A complete dynamic approach to the Generalized Beam Theory cross-section analysis including extension and shear modes , 2014 .

[49]  Ugo Andreaus,et al.  An optimal control procedure for bone adaptation under mechanical stimulus , 2012 .

[50]  Flavio Stochino,et al.  Constitutive models for strongly curved beams in the frame of isogeometric analysis , 2016 .

[51]  Ivan Giorgio,et al.  Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids , 2015 .

[52]  A. Cemal Eringen,et al.  Nonlinear theory of micro-elastic solids—II☆ , 1964 .

[53]  Samuel Forest,et al.  Homogenization methods and mechanics of generalized continua - part 2 , 2002 .

[54]  Pierre Seppecher,et al.  A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .

[55]  S. Forest Mechanics of generalized continua: construction by homogenizaton , 1998 .

[56]  Francesco dell’Isola,et al.  Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching , 2015 .

[57]  Ugo Andreaus,et al.  Soft-impact dynamics of deformable bodies , 2013 .

[58]  R. Toupin Elastic materials with couple-stresses , 1962 .

[59]  Antonio Maria Cazzani,et al.  An unsymmetric stress formulation for reissner-mindlin plates: a simple and locking-free rectangular element , 2004, Int. J. Comput. Eng. Sci..

[60]  A. Sili Homogenization of an elastic medium reinforced by anisotropic fibers , 2003 .

[61]  Giuseppe Piccardo,et al.  Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables , 2008 .

[62]  Stéphane Hans,et al.  Effects of the local resonance on the wave propagation in periodic frame structures: generalized Newtonian mechanics. , 2012, The Journal of the Acoustical Society of America.

[63]  Ivan Giorgio,et al.  A micro‐structural model for dissipation phenomena in the concrete , 2015 .

[64]  H. Altenbach,et al.  On equations of the linear theory of shells with surface stresses taken into account , 2010 .

[65]  Antonio Cazzani,et al.  Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches , 2016 .

[66]  Luca Placidi,et al.  A microscale second gradient approximation of the damage parameter of quasi‐brittle heterogeneous lattices , 2014 .

[67]  A. Cemal Eringen,et al.  NONLINEAR THEORY OF SIMPLE MICRO-ELASTIC SOLIDS-I , 1964 .

[68]  Paul Steinmann,et al.  Computational multiscale modelling of heterogeneous material layers , 2009 .

[69]  Luca Placidi,et al.  A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model , 2016 .

[70]  Emilio Turco,et al.  A strategy to identify exciting forces acting on structures , 2005 .

[71]  G. Wittum,et al.  A multiscale analysis of growth and diffusion dynamics in biological materials , 2009 .

[72]  Luisa Pagnini,et al.  A numerical algorithm for the aerodynamic identification of structures , 1997 .

[73]  Alfio Grillo,et al.  An energetic approach to the analysis of anisotropic hyperelastic materials , 2008 .

[74]  U Andreaus,et al.  Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method , 2009, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[75]  Ugo Andreaus,et al.  Modeling of Trabecular Architecture as Result of an Optimal Control Procedure , 2013 .

[76]  J. Ganghoffer,et al.  Construction of micropolar continua from the asymptotic homogenization of beam lattices , 2012 .

[77]  Emilio Turco,et al.  A three-dimensional B-spline boundary element , 1998 .

[78]  Luisa Pagnini,et al.  Reliability analysis of wind-excited structures , 2010 .

[79]  Francesco dell’Isola,et al.  Pattern formation in the three-dimensional deformations of fibered sheets , 2015 .

[80]  Pierre Seppecher,et al.  Linear elastic trusses leading to continua with exotic mechanical interactions , 2011 .

[81]  ON THE DYNAMICS OF A BEAM PARTIALLY SUPPORTED BY AN ELASTIC FOUNDATION: AN EXACT SOLUTION-SET , 2013 .

[82]  Antonio Carcaterra,et al.  Energy sinks: Vibration absorption by an optimal set of undamped oscillators , 2005 .

[83]  Luca Placidi,et al.  A variational approach for a nonlinear 1-dimensional second gradient continuum damage model , 2015 .

[84]  R. S. Lakes,et al.  Size effects in the elasticity and viscoelasticity of bone , 2003, Biomechanics and modeling in mechanobiology.

[85]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[86]  L. Placidi,et al.  Application of a continuum-mechanical model for the flow of anisotropic polar ice to the EDML core, Antarctica , 2008 .

[87]  Ivan Giorgio,et al.  Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials , 2014 .

[88]  Victor A. Eremeyev,et al.  Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale , 2012 .

[89]  Nicolas Triantafyllidis,et al.  Derivation of higher order gradient continuum theories in 2,3-D non-linear elasticity from periodic lattice models , 1994 .

[90]  Francesco dell’Isola,et al.  Plane bias extension test for a continuum with two inextensible families of fibers: A variational treatment with Lagrange multipliers and a perturbation solution , 2016 .

[91]  F. dell'Isola,et al.  Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids , 2013, 1305.6744.

[92]  Wing Kam Liu,et al.  Multiresolution analysis for material design , 2006 .

[93]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[94]  Ugo Andreaus,et al.  Optimal bone density distributions: Numerical analysis of the osteocyte spatial influence in bone remodeling , 2014, Comput. Methods Programs Biomed..

[95]  Antonio Cazzani,et al.  Isogeometric analysis of plane-curved beams , 2016 .

[96]  M. Jarroudi Homogenization of a nonlinear elastic fibre-reinforced composite: A second gradient nonlinear elastic material , 2013 .

[97]  A. Cazzani,et al.  On some mixed finite element methods for plane membrane problems , 1997 .

[98]  Luca Placidi,et al.  Thermodynamics of polycrystalline materials treated by the theory of mixtures with continuous diversity , 2006 .

[99]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[100]  Tomasz Lekszycki,et al.  A 2‐D continuum model of a mixture of bone tissue and bio‐resorbable material for simulating mass density redistribution under load slowly variable in time , 2014 .

[101]  Walter Herzog,et al.  An articular cartilage contact model based on real surface geometry. , 2005, Journal of biomechanics.

[102]  Emanuele Reccia,et al.  FEM-DEM Modeling for Out-of-plane Loaded Masonry Panels: A Limit Analysis Approach , 2012 .

[103]  Antonio Cazzani,et al.  Numerical aspects of coupling strongly frequency-dependent soil–foundation models with structural finite elements in the time-domain , 2012 .

[104]  Francesco dell’Isola,et al.  Elastic pantographic 2 D lattices : a numerical analysis on the static response and wave propagation , 2015 .