Two chi-square statistics for determining the orders p and q of an ARMA (p, q) process

The theta , lambda , and eta functions have been previously proposed for use in choosing the autoregressive and moving-average orders of an ARMA (q, p) process visually. Two chi-square statistics associated with these three functions are presented and used here to determine the orders of an ARMA process statistically. It is shown that the two statistics are asymptotically equivalent to the Quenouille-Walker's goodness-of-fit test statistic, which is a Lagrange multiplier test statistic. Some numerical examples are presented to illustrate the usefulness of the two chi-square statistics as well as the three functions in ARMA modeling. >

[1]  William F. Trench,et al.  An Algorithm for the Inversion of Finite Hankel Matrices , 1965 .

[2]  J. G. De Gooijer,et al.  Methods for Determining the Order of an Autoregressive-Moving Average Process: A , 1985 .

[3]  H. Wold,et al.  A Large-Sample Test for Moving Averages , 1949 .

[4]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[5]  An Hongzhi,et al.  Estimation of prediction error variance , 1982 .

[6]  M. S. Bartlett,et al.  Extensions of Quenouille's Test for Autoregressive Schemes , 1950 .

[7]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[8]  J. R. M. Hosking,et al.  Lagrange‐Multiplier Tests of Time‐Series Models , 1980 .

[9]  Byoungseon Choi ON THE ASYMPTOTIC DISTRIBUTION OF THE GENERALIZED PARTIAL AUTOCORRELATION FUNCTION IN AUTOREGRESSIVE MOVING‐AVERAGE PROCESSES , 1991 .

[10]  E. Hannan,et al.  The determination of optimum structures for the state space representation of multivariate stochastic processes , 1982 .

[11]  M. H. Quenouille A Large‐Sample Test for the Goodness of Fit of Autoregressive Schemes , 1947 .

[12]  Shalhav Zohar,et al.  The Solution of a Toeplitz Set of Linear Equations , 1974, JACM.

[13]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[14]  N. Lindberger Comments on "On estimating the orders of an autoregressive moving-average process with uncertain observations" , 1973 .

[15]  C. Woodside Estimation of the order of linear systems , 1971 .

[16]  H. L. Gray,et al.  On the Relationship between the S Array and the Box-Jenkins Method of ARMA Model Identification , 1981 .

[17]  R. M. J. Heuts,et al.  The Corner Method: An Investigation of an Order Discrimination Procedure for General ARMA Processes , 1981 .

[18]  William S. Cleveland,et al.  The Inverse Autocorrelations of a Time Series and Their Applications , 1972 .

[19]  Neville Davies,et al.  Some restrictions on the use of corner method hypothesis tests , 1984 .

[20]  A. M. Walker Note on a Generalization of the Large Sample Goodness of Fit Test for Linear Autoregressive Schemes , 1950 .

[21]  H. Akaike Fitting autoregressive models for prediction , 1969 .

[22]  Henry L. Gray,et al.  A New Approach to ARMA Modeling. , 1978 .

[23]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[24]  A. Takemura A Generalization of Autocorrelation and Partial Autocorrelation Functions Useful for Identification of ARMA(p,q) Processes , 1984 .

[25]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[26]  H. Akaike A new look at the statistical model identification , 1974 .

[27]  Bovas Abraham,et al.  A note on inverse autocorrelations , 1984 .

[28]  C. A. Glasbey A Generalization of Partial Autocorrelations Useful in Identifying ARMA Models , 1982 .

[29]  G. C. Tiao,et al.  Consistent Estimates of Autoregressive Parameters and Extended Sample Autocorrelation Function for Stationary and Nonstationary ARMA Models , 1984 .

[30]  On estimating the orders of an autoregressive process , 1981 .