Recent structural insight into mitochondria gained by microscopy.

Novel applications of microscopy have recently provided new insights into mitochondrial structures. Diverse techniques such as high resolution scanning electron microscopy, transmission electron microscopy, electron microscope tomography and light microscopy have contributed a better understanding of mitochondrial compartmentalization, dynamic networks of mitochondria, intermembrane bridges, segregation of mitochondrial DNA and contacts with the endoplasmic reticulum among other aspects. This review focuses on advances reported in the last five years concerning aspects of mitochondrial substructure or dynamics gained through new techniques, whether they be novel microscope methods or new ways to prepare or label specimens. Sometimes these advances have produced surprising results and more often than not, they have challenged current conceptions of how mitochondria work.

[1]  C. Hackenbrock ULTRASTRUCTURAL BASES FOR METABOLICALLY LINKED MECHANICAL ACTIVITY IN MITOCHONDRIA , 1968, The Journal of cell biology.

[2]  R. O. Poyton,et al.  Neither respiration nor cytochrome c oxidase affects mitochondrial morphology in Saccharomyces cerevisiae. , 1998, The Journal of experimental biology.

[3]  M. Yaffe,et al.  Mutational Analysis of Mdm1p Function in Nuclear and Mitochondrial Inheritance , 1997, The Journal of cell biology.

[4]  J. Vance,et al.  Intracellular trafficking of phospholipids: import of phosphatidylserine into mitochondria. , 1996, Anticancer research.

[5]  H. Dai,et al.  Population heterogeneity of higher-plant mitochondria in structure and function. , 1998, European journal of cell biology.

[6]  G. Palade,et al.  The fine structure of mitochondria , 1952, The Anatomical record.

[7]  E. Munn,et al.  The Structure of Isolated Mitochondria , 1974 .

[8]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[9]  B. Mignotte,et al.  Mitochondria and apoptosis. , 1998, European journal of biochemistry.

[10]  J. Bereiter-Hahn,et al.  Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria , 1994, Microscopy research and technique.

[11]  A. J. Bendich Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis. , 1996, Journal of molecular biology.

[12]  P. Lea,et al.  Mitochondrial structure revealed by high-resolution scanning electron microscopy. , 1989, The American journal of anatomy.

[13]  J. Mazat,et al.  Mitochondria Are Excitable Organelles Capable of Generating and Conveying Electrical and Calcium Signals , 1997, Cell.

[14]  T. Kuroiwa,et al.  The division apparatus of plastids and mitochondria. , 1998, International review of cytology.

[15]  Walter Neupert,et al.  The MIM complex mediates preprotein translocationacross the mitochondrial inner membrane and couples it to the mt-Hsp70/ATP driving system , 1995, Cell.

[16]  A. Murray,et al.  Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. , 1997, Molecular biology of the cell.

[17]  Fritiof S. Sjöstrand,et al.  The Ultrastructure of Cells as Revealed by the Electron Microscope , 1956 .

[18]  Yuru Deng,et al.  Three-dimensional periodic cubic membrane structure in the mitochondria of amoebaeChaos carolinensis , 1998, Protoplasma.

[19]  A. Lustig,et al.  Native mitochondrial creatine kinase forms octameric structures. II. Characterization of dimers and octamers by ultracentrifugation, direct mass measurements by scanning transmission electron microscopy, and image analysis of single mitochondrial creatine kinase octamers. , 1988, The Journal of biological chemistry.

[20]  S J Young,et al.  Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. , 1997, Journal of structural biology.

[21]  C. R. Taylor,et al.  The concept of symmorphosis: a testable hypothesis of structure-function relationship. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Werth,et al.  Mitochondrial Morphology and Intracellular Calcium Homeostasis in Cytochrome Oxidase-Deficient Human Fibroblasts , 1997, Neurobiology of Disease.

[23]  T. Deerinck,et al.  Electron Tomography of Mitochondria from Brown Adipocytes Reveals Crista Junctions , 1998, Journal of bioenergetics and biomembranes.

[24]  T. Senda,et al.  Intermembrane bridges within membrane organelles revealed by quick‐freeze deep‐etch electron microscopy , 1998, The Anatomical record.

[25]  M. Yaffe,et al.  Mdm12p, a Component Required for Mitochondrial Inheritance That Is Conserved between Budding and Fission Yeast , 1997, The Journal of cell biology.

[26]  F. Sjöstrand,et al.  Electron Microscopy of Mitochondria and Cytoplasmic Double Membranes: Ultra-Structure of Rod-shaped Mitochondria , 1953, Nature.

[27]  J Frank,et al.  The internal compartmentation of rat‐liver mitochondria: Tomographic study using the high‐voltage transmission electron microscope , 1994, Microscopy research and technique.

[28]  K. Baker,et al.  Mitochondrial proteins essential for viability mediate protein import into yeast mitochondria , 1991, Nature.

[29]  T Ogata,et al.  Ultra‐high‐resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers , 1997, The Anatomical record.

[30]  Y Li,et al.  Tinkerbell--a tool for interactive segmentation of 3D data. , 1997, Journal of structural biology.

[31]  J Frank,et al.  Approaches to large-scale structures. , 1995, Current opinion in structural biology.

[32]  E. Wisse,et al.  Shape and attachment of the cristae mitochondriales in mouse hepatic cell mitochondria. , 1966, Journal of ultrastructure research.

[33]  G A Perkins,et al.  Electron tomography of large, multicomponent biological structures. , 1997, Journal of structural biology.

[34]  J. Frank,et al.  Double-tilt electron tomography. , 1995, Ultramicroscopy.

[35]  C. Mannella,et al.  Reconsidering mitochondrial structure: new views of an old organelle. , 1997, Trends in biochemical sciences.

[36]  A. Verkleij,et al.  Possible role of non-bilayer lipids in the structure of mitochondria. A freeze-fracture electron microscopy study. , 1982, Biochimica et biophysica acta.

[37]  Lawrence M. Lifshitz,et al.  Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. , 1998, Science.

[38]  Jan A Witkowski,et al.  Picture control: the electron microscope and the transformation of biology in America, 1940–1960 , 2000, Medical History.

[39]  Shi Yj,et al.  Intracellular trafficking of phospholipids: import of phosphatidylserine into mitochondria. , 1996 .

[40]  B. Dobberstein,et al.  Common Principles of Protein Translocation Across Membranes , 1996, Science.

[41]  D A Agard,et al.  Automated microscopy for electron tomography. , 1992, Ultramicroscopy.

[42]  H. Lodish Molecular Cell Biology , 1986 .

[43]  P. Lea,et al.  Variations in mitochondrial ultrastructure and dynamics observed by high resolution scanning electron microscopy (HRSEM) , 1994, Microscopy research and technique.

[44]  J. Thatcher,et al.  Mitochondrial Fusion in Yeast Requires the Transmembrane GTPase Fzo1p , 1998, The Journal of cell biology.

[45]  W. Neupert,et al.  The mitochondrial protein import apparatus. , 1990, Annual review of biochemistry.

[46]  W. Baumeister,et al.  Perspectives of molecular and cellular electron tomography. , 1997, Journal of structural biology.

[47]  W. Neupert,et al.  A morphological view on mitochondrial protein targeting , 1994, Microscopy research and technique.

[48]  C. Hackenbrock Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. , 1968, Proceedings of the National Academy of Sciences of the United States of America.